Metamath Proof Explorer


Theorem frpoins3xp3g

Description: Special case of founded partial recursion over a triple Cartesian product. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses frpoins3xp3g.1 xAyBzCwtuwtuPredRA×B×Cxyzθφ
frpoins3xp3g.2 x=wφψ
frpoins3xp3g.3 y=tψχ
frpoins3xp3g.4 z=uχθ
frpoins3xp3g.5 x=Xφτ
frpoins3xp3g.6 y=Yτη
frpoins3xp3g.7 z=Zηζ
Assertion frpoins3xp3g RFrA×B×CRPoA×B×CRSeA×B×CXAYBZCζ

Proof

Step Hyp Ref Expression
1 frpoins3xp3g.1 xAyBzCwtuwtuPredRA×B×Cxyzθφ
2 frpoins3xp3g.2 x=wφψ
3 frpoins3xp3g.3 y=tψχ
4 frpoins3xp3g.4 z=uχθ
5 frpoins3xp3g.5 x=Xφτ
6 frpoins3xp3g.6 y=Yτη
7 frpoins3xp3g.7 z=Zηζ
8 2 sbcbidv x=w[˙2ndq/z]˙φ[˙2ndq/z]˙ψ
9 8 sbcbidv x=w[˙2nd1stq/y]˙[˙2ndq/z]˙φ[˙2nd1stq/y]˙[˙2ndq/z]˙ψ
10 9 cbvsbcvw [˙1st1stq/x]˙[˙2nd1stq/y]˙[˙2ndq/z]˙φ[˙1st1stq/w]˙[˙2nd1stq/y]˙[˙2ndq/z]˙ψ
11 3 sbcbidv y=t[˙2ndq/z]˙ψ[˙2ndq/z]˙χ
12 11 cbvsbcvw [˙2nd1stq/y]˙[˙2ndq/z]˙ψ[˙2nd1stq/t]˙[˙2ndq/z]˙χ
13 4 cbvsbcvw [˙2ndq/z]˙χ[˙2ndq/u]˙θ
14 13 sbcbii [˙2nd1stq/t]˙[˙2ndq/z]˙χ[˙2nd1stq/t]˙[˙2ndq/u]˙θ
15 12 14 bitri [˙2nd1stq/y]˙[˙2ndq/z]˙ψ[˙2nd1stq/t]˙[˙2ndq/u]˙θ
16 15 sbcbii [˙1st1stq/w]˙[˙2nd1stq/y]˙[˙2ndq/z]˙ψ[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
17 10 16 bitri [˙1st1stq/x]˙[˙2nd1stq/y]˙[˙2ndq/z]˙φ[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
18 17 ralbii qPredRA×B×Cp[˙1st1stq/x]˙[˙2nd1stq/y]˙[˙2ndq/z]˙φqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
19 el2xptp pA×B×CxAyBzCp=xyz
20 nfv xqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
21 nfsbc1v x[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
22 20 21 nfim xqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
23 nfv yxA
24 nfv yqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
25 nfcv _y1st1stp
26 nfsbc1v y[˙2nd1stp/y]˙[˙2ndp/z]˙φ
27 25 26 nfsbcw y[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
28 24 27 nfim yqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
29 nfv zxAyB
30 nfv zqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
31 nfcv _z1st1stp
32 nfcv _z2nd1stp
33 nfsbc1v z[˙2ndp/z]˙φ
34 32 33 nfsbcw z[˙2nd1stp/y]˙[˙2ndp/z]˙φ
35 31 34 nfsbcw z[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
36 30 35 nfim zqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
37 predss PredRA×B×CxyzA×B×C
38 sseqin2 PredRA×B×CxyzA×B×CA×B×CPredRA×B×Cxyz=PredRA×B×Cxyz
39 37 38 mpbi A×B×CPredRA×B×Cxyz=PredRA×B×Cxyz
40 39 eleq2i qA×B×CPredRA×B×CxyzqPredRA×B×Cxyz
41 40 bicomi qPredRA×B×CxyzqA×B×CPredRA×B×Cxyz
42 elin qA×B×CPredRA×B×CxyzqA×B×CqPredRA×B×Cxyz
43 41 42 bitri qPredRA×B×CxyzqA×B×CqPredRA×B×Cxyz
44 43 imbi1i qPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θqA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
45 impexp qA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θqA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
46 44 45 bitri qPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θqA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
47 46 albii qqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θqqA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
48 47 bicomi qqA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θqqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
49 r3al wAtBuCwtuPredRA×B×CxyzθwtuwAtBuCwtuPredRA×B×Cxyzθ
50 nfv wqPredRA×B×Cxyz
51 nfsbc1v w[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
52 50 51 nfim wqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
53 nfv tqPredRA×B×Cxyz
54 nfcv _t1st1stq
55 nfsbc1v t[˙2nd1stq/t]˙[˙2ndq/u]˙θ
56 54 55 nfsbcw t[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
57 53 56 nfim tqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
58 nfv uqPredRA×B×Cxyz
59 nfcv _u1st1stq
60 nfcv _u2nd1stq
61 nfsbc1v u[˙2ndq/u]˙θ
62 60 61 nfsbcw u[˙2nd1stq/t]˙[˙2ndq/u]˙θ
63 59 62 nfsbcw u[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
64 58 63 nfim uqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
65 nfv qwtuPredRA×B×Cxyzθ
66 eleq1 q=wtuqPredRA×B×CxyzwtuPredRA×B×Cxyz
67 sbcoteq1a q=wtu[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θθ
68 66 67 imbi12d q=wtuqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θwtuPredRA×B×Cxyzθ
69 52 57 64 65 68 ralxp3f qA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θwAtBuCwtuPredRA×B×Cxyzθ
70 elin wtuA×B×CPredRA×B×CxyzwtuA×B×CwtuPredRA×B×Cxyz
71 39 eleq2i wtuA×B×CPredRA×B×CxyzwtuPredRA×B×Cxyz
72 otelxp wtuA×B×CwAtBuC
73 72 anbi1i wtuA×B×CwtuPredRA×B×CxyzwAtBuCwtuPredRA×B×Cxyz
74 70 71 73 3bitr3i wtuPredRA×B×CxyzwAtBuCwtuPredRA×B×Cxyz
75 74 imbi1i wtuPredRA×B×CxyzθwAtBuCwtuPredRA×B×Cxyzθ
76 impexp wAtBuCwtuPredRA×B×CxyzθwAtBuCwtuPredRA×B×Cxyzθ
77 75 76 bitri wtuPredRA×B×CxyzθwAtBuCwtuPredRA×B×Cxyzθ
78 77 3albii wtuwtuPredRA×B×CxyzθwtuwAtBuCwtuPredRA×B×Cxyzθ
79 49 69 78 3bitr4ri wtuwtuPredRA×B×CxyzθqA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
80 df-ral qA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θqqA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
81 79 80 bitri wtuwtuPredRA×B×CxyzθqqA×B×CqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
82 df-ral qPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θqqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
83 48 81 82 3bitr4ri qPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θwtuwtuPredRA×B×Cxyzθ
84 83 1 biimtrid xAyBzCqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θφ
85 predeq3 p=xyzPredRA×B×Cp=PredRA×B×Cxyz
86 85 raleqdv p=xyzqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ
87 sbcoteq1a p=xyz[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φφ
88 86 87 imbi12d p=xyzqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φqPredRA×B×Cxyz[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θφ
89 84 88 syl5ibrcom xAyBzCp=xyzqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
90 89 3expia xAyBzCp=xyzqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
91 29 36 90 rexlimd xAyBzCp=xyzqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
92 91 ex xAyBzCp=xyzqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
93 23 28 92 rexlimd xAyBzCp=xyzqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
94 22 93 rexlimi xAyBzCp=xyzqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
95 19 94 sylbi pA×B×CqPredRA×B×Cp[˙1st1stq/w]˙[˙2nd1stq/t]˙[˙2ndq/u]˙θ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
96 18 95 biimtrid pA×B×CqPredRA×B×Cp[˙1st1stq/x]˙[˙2nd1stq/y]˙[˙2ndq/z]˙φ[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
97 2fveq3 p=q1st1stp=1st1stq
98 2fveq3 p=q2nd1stp=2nd1stq
99 fveq2 p=q2ndp=2ndq
100 99 sbceq1d p=q[˙2ndp/z]˙φ[˙2ndq/z]˙φ
101 98 100 sbceqbid p=q[˙2nd1stp/y]˙[˙2ndp/z]˙φ[˙2nd1stq/y]˙[˙2ndq/z]˙φ
102 97 101 sbceqbid p=q[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ[˙1st1stq/x]˙[˙2nd1stq/y]˙[˙2ndq/z]˙φ
103 96 102 frpoins2g RFrA×B×CRPoA×B×CRSeA×B×CpA×B×C[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φ
104 ralxp3es pA×B×C[˙1st1stp/x]˙[˙2nd1stp/y]˙[˙2ndp/z]˙φxAyBzCφ
105 103 104 sylib RFrA×B×CRPoA×B×CRSeA×B×CxAyBzCφ
106 5 6 7 rspc3v XAYBZCxAyBzCφζ
107 105 106 mpan9 RFrA×B×CRPoA×B×CRSeA×B×CXAYBZCζ