| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frrlem15.1 |
|
| 2 |
|
frrlem15.2 |
|
| 3 |
|
vex |
|
| 4 |
|
vex |
|
| 5 |
3 4
|
breldm |
|
| 6 |
5
|
adantr |
|
| 7 |
|
vex |
|
| 8 |
3 7
|
breldm |
|
| 9 |
8
|
adantl |
|
| 10 |
6 9
|
elind |
|
| 11 |
|
id |
|
| 12 |
4
|
brresi |
|
| 13 |
7
|
brresi |
|
| 14 |
12 13
|
anbi12i |
|
| 15 |
|
an4 |
|
| 16 |
14 15
|
bitri |
|
| 17 |
10 10 11 16
|
syl21anbrc |
|
| 18 |
|
inss1 |
|
| 19 |
1
|
frrlem3 |
|
| 20 |
18 19
|
sstrid |
|
| 21 |
20
|
ad2antrl |
|
| 22 |
|
simpll |
|
| 23 |
|
frss |
|
| 24 |
21 22 23
|
sylc |
|
| 25 |
|
simplr |
|
| 26 |
|
sess2 |
|
| 27 |
21 25 26
|
sylc |
|
| 28 |
1
|
frrlem4 |
|
| 29 |
28
|
adantl |
|
| 30 |
1
|
frrlem4 |
|
| 31 |
|
incom |
|
| 32 |
31
|
reseq2i |
|
| 33 |
|
fneq12 |
|
| 34 |
32 31 33
|
mp2an |
|
| 35 |
32
|
fveq1i |
|
| 36 |
|
predeq2 |
|
| 37 |
31 36
|
ax-mp |
|
| 38 |
32 37
|
reseq12i |
|
| 39 |
38
|
oveq2i |
|
| 40 |
35 39
|
eqeq12i |
|
| 41 |
31 40
|
raleqbii |
|
| 42 |
34 41
|
anbi12i |
|
| 43 |
30 42
|
sylibr |
|
| 44 |
43
|
ancoms |
|
| 45 |
44
|
adantl |
|
| 46 |
|
frr3g |
|
| 47 |
24 27 29 45 46
|
syl211anc |
|
| 48 |
47
|
breqd |
|
| 49 |
48
|
biimprd |
|
| 50 |
1
|
frrlem2 |
|
| 51 |
50
|
funresd |
|
| 52 |
51
|
ad2antrl |
|
| 53 |
|
dffun2 |
|
| 54 |
|
2sp |
|
| 55 |
54
|
sps |
|
| 56 |
53 55
|
simplbiim |
|
| 57 |
52 56
|
syl |
|
| 58 |
49 57
|
sylan2d |
|
| 59 |
17 58
|
syl5 |
|