Metamath Proof Explorer


Theorem funopg

Description: A Kuratowski ordered pair of sets is a function only if its components are equal. (Contributed by NM, 5-Jun-2008) (Revised by Mario Carneiro, 26-Apr-2015) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng , as relsnopg is to relop . (New usage is discouraged.)

Ref Expression
Assertion funopg A V B W Fun A B A = B

Proof

Step Hyp Ref Expression
1 opeq1 u = A u t = A t
2 1 funeqd u = A Fun u t Fun A t
3 eqeq1 u = A u = t A = t
4 2 3 imbi12d u = A Fun u t u = t Fun A t A = t
5 opeq2 t = B A t = A B
6 5 funeqd t = B Fun A t Fun A B
7 eqeq2 t = B A = t A = B
8 6 7 imbi12d t = B Fun A t A = t Fun A B A = B
9 funrel Fun u t Rel u t
10 vex u V
11 vex t V
12 10 11 relop Rel u t x y u = x t = x y
13 9 12 sylib Fun u t x y u = x t = x y
14 10 11 opth u t = x x y u = x t = x y
15 vex x V
16 15 opid x x = x
17 16 preq1i x x x x y = x x x y
18 vex y V
19 15 18 dfop x y = x x y
20 19 preq2i x x x y = x x x x y
21 snex x V
22 zfpair2 x y V
23 21 22 dfop x x y = x x x y
24 17 20 23 3eqtr4ri x x y = x x x y
25 24 eqeq2i u t = x x y u t = x x x y
26 14 25 bitr3i u = x t = x y u t = x x x y
27 dffun4 Fun u t Rel u t z w v z w u t z v u t w = v
28 27 simprbi Fun u t z w v z w u t z v u t w = v
29 opex x x V
30 29 prid1 x x x x x y
31 eleq2 u t = x x x y x x u t x x x x x y
32 30 31 mpbiri u t = x x x y x x u t
33 opex x y V
34 33 prid2 x y x x x y
35 eleq2 u t = x x x y x y u t x y x x x y
36 34 35 mpbiri u t = x x x y x y u t
37 32 36 jca u t = x x x y x x u t x y u t
38 opeq12 z = x w = x z w = x x
39 38 3adant3 z = x w = x v = y z w = x x
40 39 eleq1d z = x w = x v = y z w u t x x u t
41 opeq12 z = x v = y z v = x y
42 41 3adant2 z = x w = x v = y z v = x y
43 42 eleq1d z = x w = x v = y z v u t x y u t
44 40 43 anbi12d z = x w = x v = y z w u t z v u t x x u t x y u t
45 eqeq12 w = x v = y w = v x = y
46 45 3adant1 z = x w = x v = y w = v x = y
47 44 46 imbi12d z = x w = x v = y z w u t z v u t w = v x x u t x y u t x = y
48 47 spc3gv x V x V y V z w v z w u t z v u t w = v x x u t x y u t x = y
49 15 15 18 48 mp3an z w v z w u t z v u t w = v x x u t x y u t x = y
50 28 37 49 syl2im Fun u t u t = x x x y x = y
51 26 50 syl5bi Fun u t u = x t = x y x = y
52 dfsn2 x = x x
53 preq2 x = y x x = x y
54 52 53 syl5req x = y x y = x
55 54 eqeq2d x = y t = x y t = x
56 eqtr3 u = x t = x u = t
57 56 expcom t = x u = x u = t
58 55 57 syl6bi x = y t = x y u = x u = t
59 58 com13 u = x t = x y x = y u = t
60 59 imp u = x t = x y x = y u = t
61 51 60 sylcom Fun u t u = x t = x y u = t
62 61 exlimdvv Fun u t x y u = x t = x y u = t
63 13 62 mpd Fun u t u = t
64 4 8 63 vtocl2g A V B W Fun A B A = B
65 64 3impia A V B W Fun A B A = B