Description: A Kuratowski ordered pair of sets is a function only if its components are equal. (Contributed by NM, 5-Jun-2008) (Revised by Mario Carneiro, 26-Apr-2015) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng , as relsnopg is to relop . (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | funopg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 | |
|
2 | 1 | funeqd | |
3 | eqeq1 | |
|
4 | 2 3 | imbi12d | |
5 | opeq2 | |
|
6 | 5 | funeqd | |
7 | eqeq2 | |
|
8 | 6 7 | imbi12d | |
9 | funrel | |
|
10 | vex | |
|
11 | vex | |
|
12 | 10 11 | relop | |
13 | 9 12 | sylib | |
14 | 10 11 | opth | |
15 | vex | |
|
16 | 15 | opid | |
17 | 16 | preq1i | |
18 | vex | |
|
19 | 15 18 | dfop | |
20 | 19 | preq2i | |
21 | vsnex | |
|
22 | zfpair2 | |
|
23 | 21 22 | dfop | |
24 | 17 20 23 | 3eqtr4ri | |
25 | 24 | eqeq2i | |
26 | 14 25 | bitr3i | |
27 | dffun4 | |
|
28 | 27 | simprbi | |
29 | opex | |
|
30 | 29 | prid1 | |
31 | eleq2 | |
|
32 | 30 31 | mpbiri | |
33 | opex | |
|
34 | 33 | prid2 | |
35 | eleq2 | |
|
36 | 34 35 | mpbiri | |
37 | 32 36 | jca | |
38 | opeq12 | |
|
39 | 38 | 3adant3 | |
40 | 39 | eleq1d | |
41 | opeq12 | |
|
42 | 41 | 3adant2 | |
43 | 42 | eleq1d | |
44 | 40 43 | anbi12d | |
45 | eqeq12 | |
|
46 | 45 | 3adant1 | |
47 | 44 46 | imbi12d | |
48 | 47 | spc3gv | |
49 | 15 15 18 48 | mp3an | |
50 | 28 37 49 | syl2im | |
51 | 26 50 | biimtrid | |
52 | dfsn2 | |
|
53 | preq2 | |
|
54 | 52 53 | eqtr2id | |
55 | 54 | eqeq2d | |
56 | eqtr3 | |
|
57 | 56 | expcom | |
58 | 55 57 | syl6bi | |
59 | 58 | com13 | |
60 | 59 | imp | |
61 | 51 60 | sylcom | |
62 | 61 | exlimdvv | |
63 | 13 62 | mpd | |
64 | 4 8 63 | vtocl2g | |
65 | 64 | 3impia | |