Metamath Proof Explorer


Theorem fusgreghash2wsp

Description: In a finite k-regular graph with N vertices there are N times "k choose 2" paths with length 2, according to statement 8 in Huneke p. 2: "... giving n * ( k 2 ) total paths of length two.", if the direction of traversing the path is not respected. For simple paths of length 2 represented by length 3 strings, however, we have again n*k*(k-1) such paths. (Contributed by Alexander van der Vekens, 11-Mar-2018) (Revised by AV, 19-May-2021) (Proof shortened by AV, 12-Jan-2022)

Ref Expression
Hypothesis fusgreghash2wsp.v V=VtxG
Assertion fusgreghash2wsp GFinUSGraphVvVVtxDegGv=K2WSPathsNG=VKK1

Proof

Step Hyp Ref Expression
1 fusgreghash2wsp.v V=VtxG
2 fveq1 s=ts1=t1
3 2 eqeq1d s=ts1=at1=a
4 3 cbvrabv s2WSPathsNG|s1=a=t2WSPathsNG|t1=a
5 4 mpteq2i aVs2WSPathsNG|s1=a=aVt2WSPathsNG|t1=a
6 1 5 fusgreg2wsp GFinUSGraph2WSPathsNG=yVaVs2WSPathsNG|s1=ay
7 6 ad2antrr GFinUSGraphVvVVtxDegGv=K2WSPathsNG=yVaVs2WSPathsNG|s1=ay
8 7 fveq2d GFinUSGraphVvVVtxDegGv=K2WSPathsNG=yVaVs2WSPathsNG|s1=ay
9 1 fusgrvtxfi GFinUSGraphVFin
10 eqeq2 a=ys1=as1=y
11 10 rabbidv a=ys2WSPathsNG|s1=a=s2WSPathsNG|s1=y
12 eqid aVs2WSPathsNG|s1=a=aVs2WSPathsNG|s1=a
13 ovex 2WSPathsNGV
14 13 rabex s2WSPathsNG|s1=yV
15 11 12 14 fvmpt yVaVs2WSPathsNG|s1=ay=s2WSPathsNG|s1=y
16 15 adantl GFinUSGraphyVaVs2WSPathsNG|s1=ay=s2WSPathsNG|s1=y
17 eqid VtxG=VtxG
18 17 fusgrvtxfi GFinUSGraphVtxGFin
19 wspthnfi VtxGFin2WSPathsNGFin
20 rabfi 2WSPathsNGFins2WSPathsNG|s1=yFin
21 18 19 20 3syl GFinUSGraphs2WSPathsNG|s1=yFin
22 21 adantr GFinUSGraphyVs2WSPathsNG|s1=yFin
23 16 22 eqeltrd GFinUSGraphyVaVs2WSPathsNG|s1=ayFin
24 1 5 2wspmdisj DisjyVaVs2WSPathsNG|s1=ay
25 24 a1i GFinUSGraphDisjyVaVs2WSPathsNG|s1=ay
26 9 23 25 hashiun GFinUSGraphyVaVs2WSPathsNG|s1=ay=yVaVs2WSPathsNG|s1=ay
27 26 ad2antrr GFinUSGraphVvVVtxDegGv=KyVaVs2WSPathsNG|s1=ay=yVaVs2WSPathsNG|s1=ay
28 1 5 fusgreghash2wspv GFinUSGraphvVVtxDegGv=KaVs2WSPathsNG|s1=av=KK1
29 ralim vVVtxDegGv=KaVs2WSPathsNG|s1=av=KK1vVVtxDegGv=KvVaVs2WSPathsNG|s1=av=KK1
30 28 29 syl GFinUSGraphvVVtxDegGv=KvVaVs2WSPathsNG|s1=av=KK1
31 30 adantr GFinUSGraphVvVVtxDegGv=KvVaVs2WSPathsNG|s1=av=KK1
32 31 imp GFinUSGraphVvVVtxDegGv=KvVaVs2WSPathsNG|s1=av=KK1
33 2fveq3 v=yaVs2WSPathsNG|s1=av=aVs2WSPathsNG|s1=ay
34 33 eqeq1d v=yaVs2WSPathsNG|s1=av=KK1aVs2WSPathsNG|s1=ay=KK1
35 34 rspccva vVaVs2WSPathsNG|s1=av=KK1yVaVs2WSPathsNG|s1=ay=KK1
36 32 35 sylan GFinUSGraphVvVVtxDegGv=KyVaVs2WSPathsNG|s1=ay=KK1
37 36 sumeq2dv GFinUSGraphVvVVtxDegGv=KyVaVs2WSPathsNG|s1=ay=yVKK1
38 9 adantr GFinUSGraphVVFin
39 eqid VtxDegG=VtxDegG
40 1 39 fusgrregdegfi GFinUSGraphVvVVtxDegGv=KK0
41 40 imp GFinUSGraphVvVVtxDegGv=KK0
42 41 nn0cnd GFinUSGraphVvVVtxDegGv=KK
43 kcnktkm1cn KKK1
44 42 43 syl GFinUSGraphVvVVtxDegGv=KKK1
45 fsumconst VFinKK1yVKK1=VKK1
46 38 44 45 syl2an2r GFinUSGraphVvVVtxDegGv=KyVKK1=VKK1
47 37 46 eqtrd GFinUSGraphVvVVtxDegGv=KyVaVs2WSPathsNG|s1=ay=VKK1
48 8 27 47 3eqtrd GFinUSGraphVvVVtxDegGv=K2WSPathsNG=VKK1
49 48 ex GFinUSGraphVvVVtxDegGv=K2WSPathsNG=VKK1