Description: In a finite k-regular graph with N vertices there are N times "k choose 2" paths with length 2, according to statement 8 in Huneke p. 2: "... giving n * ( k 2 ) total paths of length two.", if the direction of traversing the path is not respected. For simple paths of length 2 represented by length 3 strings, however, we have again n*k*(k-1) such paths. (Contributed by Alexander van der Vekens, 11-Mar-2018) (Revised by AV, 19-May-2021) (Proof shortened by AV, 12-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fusgreghash2wsp.v | |
|
Assertion | fusgreghash2wsp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgreghash2wsp.v | |
|
2 | fveq1 | |
|
3 | 2 | eqeq1d | |
4 | 3 | cbvrabv | |
5 | 4 | mpteq2i | |
6 | 1 5 | fusgreg2wsp | |
7 | 6 | ad2antrr | |
8 | 7 | fveq2d | |
9 | 1 | fusgrvtxfi | |
10 | eqeq2 | |
|
11 | 10 | rabbidv | |
12 | eqid | |
|
13 | ovex | |
|
14 | 13 | rabex | |
15 | 11 12 14 | fvmpt | |
16 | 15 | adantl | |
17 | eqid | |
|
18 | 17 | fusgrvtxfi | |
19 | wspthnfi | |
|
20 | rabfi | |
|
21 | 18 19 20 | 3syl | |
22 | 21 | adantr | |
23 | 16 22 | eqeltrd | |
24 | 1 5 | 2wspmdisj | |
25 | 24 | a1i | |
26 | 9 23 25 | hashiun | |
27 | 26 | ad2antrr | |
28 | 1 5 | fusgreghash2wspv | |
29 | ralim | |
|
30 | 28 29 | syl | |
31 | 30 | adantr | |
32 | 31 | imp | |
33 | 2fveq3 | |
|
34 | 33 | eqeq1d | |
35 | 34 | rspccva | |
36 | 32 35 | sylan | |
37 | 36 | sumeq2dv | |
38 | 9 | adantr | |
39 | eqid | |
|
40 | 1 39 | fusgrregdegfi | |
41 | 40 | imp | |
42 | 41 | nn0cnd | |
43 | kcnktkm1cn | |
|
44 | 42 43 | syl | |
45 | fsumconst | |
|
46 | 38 44 45 | syl2an2r | |
47 | 37 46 | eqtrd | |
48 | 8 27 47 | 3eqtrd | |
49 | 48 | ex | |