Description: Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fwddifval.1 | |
|
fwddifval.2 | |
||
fwddifval.3 | |
||
fwddifval.4 | |
||
Assertion | fwddifval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fwddifval.1 | |
|
2 | fwddifval.2 | |
|
3 | fwddifval.3 | |
|
4 | fwddifval.4 | |
|
5 | df-fwddif | |
|
6 | dmeq | |
|
7 | 6 | eleq2d | |
8 | 6 7 | rabeqbidv | |
9 | fveq1 | |
|
10 | fveq1 | |
|
11 | 9 10 | oveq12d | |
12 | 8 11 | mpteq12dv | |
13 | cnex | |
|
14 | elpm2r | |
|
15 | 13 13 14 | mpanl12 | |
16 | 2 1 15 | syl2anc | |
17 | 2 | fdmd | |
18 | 13 | a1i | |
19 | 18 1 | ssexd | |
20 | 17 19 | eqeltrd | |
21 | rabexg | |
|
22 | mptexg | |
|
23 | 20 21 22 | 3syl | |
24 | 5 12 16 23 | fvmptd3 | |
25 | 17 | eleq2d | |
26 | 17 25 | rabeqbidv | |
27 | 26 | mpteq1d | |
28 | 24 27 | eqtrd | |
29 | fvoveq1 | |
|
30 | fveq2 | |
|
31 | 29 30 | oveq12d | |
32 | 31 | adantl | |
33 | oveq1 | |
|
34 | 33 | eleq1d | |
35 | 34 | elrab | |
36 | 3 4 35 | sylanbrc | |
37 | ovexd | |
|
38 | 28 32 36 37 | fvmptd | |