Metamath Proof Explorer


Theorem fwddifval

Description: Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020)

Ref Expression
Hypotheses fwddifval.1 φA
fwddifval.2 φF:A
fwddifval.3 φXA
fwddifval.4 φX+1A
Assertion fwddifval φFX=FX+1FX

Proof

Step Hyp Ref Expression
1 fwddifval.1 φA
2 fwddifval.2 φF:A
3 fwddifval.3 φXA
4 fwddifval.4 φX+1A
5 df-fwddif =f𝑝𝑚xydomf|y+1domffx+1fx
6 dmeq f=Fdomf=domF
7 6 eleq2d f=Fy+1domfy+1domF
8 6 7 rabeqbidv f=Fydomf|y+1domf=ydomF|y+1domF
9 fveq1 f=Ffx+1=Fx+1
10 fveq1 f=Ffx=Fx
11 9 10 oveq12d f=Ffx+1fx=Fx+1Fx
12 8 11 mpteq12dv f=Fxydomf|y+1domffx+1fx=xydomF|y+1domFFx+1Fx
13 cnex V
14 elpm2r VVF:AAF𝑝𝑚
15 13 13 14 mpanl12 F:AAF𝑝𝑚
16 2 1 15 syl2anc φF𝑝𝑚
17 2 fdmd φdomF=A
18 13 a1i φV
19 18 1 ssexd φAV
20 17 19 eqeltrd φdomFV
21 rabexg domFVydomF|y+1domFV
22 mptexg ydomF|y+1domFVxydomF|y+1domFFx+1FxV
23 20 21 22 3syl φxydomF|y+1domFFx+1FxV
24 5 12 16 23 fvmptd3 φF=xydomF|y+1domFFx+1Fx
25 17 eleq2d φy+1domFy+1A
26 17 25 rabeqbidv φydomF|y+1domF=yA|y+1A
27 26 mpteq1d φxydomF|y+1domFFx+1Fx=xyA|y+1AFx+1Fx
28 24 27 eqtrd φF=xyA|y+1AFx+1Fx
29 fvoveq1 x=XFx+1=FX+1
30 fveq2 x=XFx=FX
31 29 30 oveq12d x=XFx+1Fx=FX+1FX
32 31 adantl φx=XFx+1Fx=FX+1FX
33 oveq1 y=Xy+1=X+1
34 33 eleq1d y=Xy+1AX+1A
35 34 elrab XyA|y+1AXAX+1A
36 3 4 35 sylanbrc φXyA|y+1A
37 ovexd φFX+1FXV
38 28 32 36 37 fvmptd φFX=FX+1FX