Metamath Proof Explorer


Theorem galactghm

Description: The currying of a group action is a group homomorphism between the group G and the symmetric group ( SymGrpY ) . (Contributed by FL, 17-May-2010) (Proof shortened by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses galactghm.x X=BaseG
galactghm.h H=SymGrpY
galactghm.f F=xXyYx˙y
Assertion galactghm ˙GGrpActYFGGrpHomH

Proof

Step Hyp Ref Expression
1 galactghm.x X=BaseG
2 galactghm.h H=SymGrpY
3 galactghm.f F=xXyYx˙y
4 eqid BaseH=BaseH
5 eqid +G=+G
6 eqid +H=+H
7 gagrp ˙GGrpActYGGrp
8 gaset ˙GGrpActYYV
9 2 symggrp YVHGrp
10 8 9 syl ˙GGrpActYHGrp
11 eqid yYx˙y=yYx˙y
12 1 11 gapm ˙GGrpActYxXyYx˙y:Y1-1 ontoY
13 8 adantr ˙GGrpActYxXYV
14 2 4 elsymgbas YVyYx˙yBaseHyYx˙y:Y1-1 ontoY
15 13 14 syl ˙GGrpActYxXyYx˙yBaseHyYx˙y:Y1-1 ontoY
16 12 15 mpbird ˙GGrpActYxXyYx˙yBaseH
17 16 3 fmptd ˙GGrpActYF:XBaseH
18 df-3an zXwXyYzXwXyY
19 1 5 gaass ˙GGrpActYzXwXyYz+Gw˙y=z˙w˙y
20 18 19 sylan2br ˙GGrpActYzXwXyYz+Gw˙y=z˙w˙y
21 20 anassrs ˙GGrpActYzXwXyYz+Gw˙y=z˙w˙y
22 21 mpteq2dva ˙GGrpActYzXwXyYz+Gw˙y=yYz˙w˙y
23 oveq1 x=z+Gwx˙y=z+Gw˙y
24 23 mpteq2dv x=z+GwyYx˙y=yYz+Gw˙y
25 7 adantr ˙GGrpActYzXwXGGrp
26 simprl ˙GGrpActYzXwXzX
27 simprr ˙GGrpActYzXwXwX
28 1 5 grpcl GGrpzXwXz+GwX
29 25 26 27 28 syl3anc ˙GGrpActYzXwXz+GwX
30 8 adantr ˙GGrpActYzXwXYV
31 30 mptexd ˙GGrpActYzXwXyYz+Gw˙yV
32 3 24 29 31 fvmptd3 ˙GGrpActYzXwXFz+Gw=yYz+Gw˙y
33 17 adantr ˙GGrpActYzXwXF:XBaseH
34 33 26 ffvelcdmd ˙GGrpActYzXwXFzBaseH
35 33 27 ffvelcdmd ˙GGrpActYzXwXFwBaseH
36 2 4 6 symgov FzBaseHFwBaseHFz+HFw=FzFw
37 34 35 36 syl2anc ˙GGrpActYzXwXFz+HFw=FzFw
38 1 gaf ˙GGrpActY˙:X×YY
39 38 ad2antrr ˙GGrpActYzXwXyY˙:X×YY
40 27 adantr ˙GGrpActYzXwXyYwX
41 simpr ˙GGrpActYzXwXyYyY
42 39 40 41 fovcdmd ˙GGrpActYzXwXyYw˙yY
43 oveq1 x=wx˙y=w˙y
44 43 mpteq2dv x=wyYx˙y=yYw˙y
45 30 mptexd ˙GGrpActYzXwXyYw˙yV
46 3 44 27 45 fvmptd3 ˙GGrpActYzXwXFw=yYw˙y
47 oveq1 x=zx˙y=z˙y
48 47 mpteq2dv x=zyYx˙y=yYz˙y
49 30 mptexd ˙GGrpActYzXwXyYz˙yV
50 3 48 26 49 fvmptd3 ˙GGrpActYzXwXFz=yYz˙y
51 oveq2 y=xz˙y=z˙x
52 51 cbvmptv yYz˙y=xYz˙x
53 50 52 eqtrdi ˙GGrpActYzXwXFz=xYz˙x
54 oveq2 x=w˙yz˙x=z˙w˙y
55 42 46 53 54 fmptco ˙GGrpActYzXwXFzFw=yYz˙w˙y
56 37 55 eqtrd ˙GGrpActYzXwXFz+HFw=yYz˙w˙y
57 22 32 56 3eqtr4d ˙GGrpActYzXwXFz+Gw=Fz+HFw
58 1 4 5 6 7 10 17 57 isghmd ˙GGrpActYFGGrpHomH