Metamath Proof Explorer


Theorem gexex

Description: In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if E = 0 , for example in an infinite p-group, where there are elements of arbitrarily large orders (so E is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexex.1 X=BaseG
gexex.2 E=gExG
gexex.3 O=odG
Assertion gexex GAbelExXOx=E

Proof

Step Hyp Ref Expression
1 gexex.1 X=BaseG
2 gexex.2 E=gExG
3 gexex.3 O=odG
4 simpll GAbelExXOx=supranO<GAbel
5 simplr GAbelExXOx=supranO<E
6 simprl GAbelExXOx=supranO<xX
7 1 3 odf O:X0
8 frn O:X0ranO0
9 7 8 ax-mp ranO0
10 nn0ssz 0
11 9 10 sstri ranO
12 nnz EE
13 12 adantl GAbelEE
14 ablgrp GAbelGGrp
15 14 adantr GAbelEGGrp
16 1 2 3 gexod GGrpxXOxE
17 15 16 sylan GAbelExXOxE
18 1 3 odcl xXOx0
19 18 adantl GAbelExXOx0
20 19 nn0zd GAbelExXOx
21 simplr GAbelExXE
22 dvdsle OxEOxEOxE
23 20 21 22 syl2anc GAbelExXOxEOxE
24 17 23 mpd GAbelExXOxE
25 24 ralrimiva GAbelExXOxE
26 ffn O:X0OFnX
27 7 26 ax-mp OFnX
28 breq1 y=OxyEOxE
29 28 ralrn OFnXyranOyExXOxE
30 27 29 ax-mp yranOyExXOxE
31 25 30 sylibr GAbelEyranOyE
32 brralrspcev EyranOyEnyranOyn
33 13 31 32 syl2anc GAbelEnyranOyn
34 33 ad2antrr GAbelExXOx=supranO<yXnyranOyn
35 27 a1i GAbelExXOx=supranO<OFnX
36 fnfvelrn OFnXyXOyranO
37 35 36 sylan GAbelExXOx=supranO<yXOyranO
38 suprzub ranOnyranOynOyranOOysupranO<
39 11 34 37 38 mp3an2i GAbelExXOx=supranO<yXOysupranO<
40 simplrr GAbelExXOx=supranO<yXOx=supranO<
41 39 40 breqtrrd GAbelExXOx=supranO<yXOyOx
42 1 2 3 4 5 6 41 gexexlem GAbelExXOx=supranO<Ox=E
43 1 grpbn0 GGrpX
44 15 43 syl GAbelEX
45 7 fdmi domO=X
46 45 eqeq1i domO=X=
47 dm0rn0 domO=ranO=
48 46 47 bitr3i X=ranO=
49 48 necon3bii XranO
50 44 49 sylib GAbelEranO
51 suprzcl2 ranOranOnyranOynsupranO<ranO
52 11 50 33 51 mp3an2i GAbelEsupranO<ranO
53 fvelrnb OFnXsupranO<ranOxXOx=supranO<
54 27 53 ax-mp supranO<ranOxXOx=supranO<
55 52 54 sylib GAbelExXOx=supranO<
56 42 55 reximddv GAbelExXOx=E