Metamath Proof Explorer


Theorem ghmquskerlem3

Description: The mapping H induced by a surjective group homomorphism F from the quotient group Q over F 's kernel K is a group isomorphism. In this case, one says that F factors through Q , which is also called the factor group. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ghmqusker.1 0˙=0H
ghmqusker.f φFGGrpHomH
ghmqusker.k K=F-10˙
ghmqusker.q Q=G/𝑠G~QGK
ghmqusker.j J=qBaseQFq
Assertion ghmquskerlem3 φJQGrpHomH

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0˙=0H
2 ghmqusker.f φFGGrpHomH
3 ghmqusker.k K=F-10˙
4 ghmqusker.q Q=G/𝑠G~QGK
5 ghmqusker.j J=qBaseQFq
6 eqid BaseQ=BaseQ
7 eqid BaseH=BaseH
8 eqid +Q=+Q
9 eqid +H=+H
10 1 ghmker FGGrpHomHF-10˙NrmSGrpG
11 2 10 syl φF-10˙NrmSGrpG
12 3 11 eqeltrid φKNrmSGrpG
13 4 qusgrp KNrmSGrpGQGrp
14 12 13 syl φQGrp
15 ghmrn FGGrpHomHranFSubGrpH
16 subgrcl ranFSubGrpHHGrp
17 2 15 16 3syl φHGrp
18 2 adantr φqBaseQFGGrpHomH
19 18 imaexd φqBaseQFqV
20 19 uniexd φqBaseQFqV
21 5 a1i φJ=qBaseQFq
22 simpr φrBaseQxrJr=FxJr=Fx
23 eqid BaseG=BaseG
24 23 7 ghmf FGGrpHomHF:BaseGBaseH
25 2 24 syl φF:BaseGBaseH
26 25 frnd φranFBaseH
27 26 ad3antrrr φrBaseQxrJr=FxranFBaseH
28 25 ffnd φFFnBaseG
29 28 ad3antrrr φrBaseQxrJr=FxFFnBaseG
30 4 a1i φQ=G/𝑠G~QGK
31 eqidd φBaseG=BaseG
32 ovexd φG~QGKV
33 ghmgrp1 FGGrpHomHGGrp
34 2 33 syl φGGrp
35 30 31 32 34 qusbas φBaseG/G~QGK=BaseQ
36 nsgsubg KNrmSGrpGKSubGrpG
37 eqid G~QGK=G~QGK
38 23 37 eqger KSubGrpGG~QGKErBaseG
39 12 36 38 3syl φG~QGKErBaseG
40 39 qsss φBaseG/G~QGK𝒫BaseG
41 35 40 eqsstrrd φBaseQ𝒫BaseG
42 41 sselda φrBaseQr𝒫BaseG
43 42 elpwid φrBaseQrBaseG
44 43 sselda φrBaseQxrxBaseG
45 44 adantr φrBaseQxrJr=FxxBaseG
46 29 45 fnfvelrnd φrBaseQxrJr=FxFxranF
47 27 46 sseldd φrBaseQxrJr=FxFxBaseH
48 22 47 eqeltrd φrBaseQxrJr=FxJrBaseH
49 2 adantr φrBaseQFGGrpHomH
50 simpr φrBaseQrBaseQ
51 1 49 3 4 5 50 ghmquskerlem2 φrBaseQxrJr=Fx
52 48 51 r19.29a φrBaseQJrBaseH
53 20 21 52 fmpt2d φJ:BaseQBaseH
54 39 ad6antr φrBaseQsBaseQxrJr=FxysJs=FyG~QGKErBaseG
55 50 ad5antr φrBaseQsBaseQxrJr=FxysJs=FyrBaseQ
56 35 ad6antr φrBaseQsBaseQxrJr=FxysJs=FyBaseG/G~QGK=BaseQ
57 55 56 eleqtrrd φrBaseQsBaseQxrJr=FxysJs=FyrBaseG/G~QGK
58 simp-4r φrBaseQsBaseQxrJr=FxysJs=Fyxr
59 qsel G~QGKErBaseGrBaseG/G~QGKxrr=xG~QGK
60 54 57 58 59 syl3anc φrBaseQsBaseQxrJr=FxysJs=Fyr=xG~QGK
61 simp-5r φrBaseQsBaseQxrJr=FxysJs=FysBaseQ
62 61 56 eleqtrrd φrBaseQsBaseQxrJr=FxysJs=FysBaseG/G~QGK
63 simplr φrBaseQsBaseQxrJr=FxysJs=Fyys
64 qsel G~QGKErBaseGsBaseG/G~QGKyss=yG~QGK
65 54 62 63 64 syl3anc φrBaseQsBaseQxrJr=FxysJs=Fys=yG~QGK
66 60 65 oveq12d φrBaseQsBaseQxrJr=FxysJs=Fyr+Qs=xG~QGK+QyG~QGK
67 12 ad6antr φrBaseQsBaseQxrJr=FxysJs=FyKNrmSGrpG
68 43 ad5antr φrBaseQsBaseQxrJr=FxysJs=FyrBaseG
69 68 58 sseldd φrBaseQsBaseQxrJr=FxysJs=FyxBaseG
70 41 sselda φsBaseQs𝒫BaseG
71 70 elpwid φsBaseQsBaseG
72 71 adantlr φrBaseQsBaseQsBaseG
73 72 ad4antr φrBaseQsBaseQxrJr=FxysJs=FysBaseG
74 73 63 sseldd φrBaseQsBaseQxrJr=FxysJs=FyyBaseG
75 eqid +G=+G
76 4 23 75 8 qusadd KNrmSGrpGxBaseGyBaseGxG~QGK+QyG~QGK=x+GyG~QGK
77 67 69 74 76 syl3anc φrBaseQsBaseQxrJr=FxysJs=FyxG~QGK+QyG~QGK=x+GyG~QGK
78 66 77 eqtrd φrBaseQsBaseQxrJr=FxysJs=Fyr+Qs=x+GyG~QGK
79 78 fveq2d φrBaseQsBaseQxrJr=FxysJs=FyJr+Qs=Jx+GyG~QGK
80 2 ad6antr φrBaseQsBaseQxrJr=FxysJs=FyFGGrpHomH
81 80 33 syl φrBaseQsBaseQxrJr=FxysJs=FyGGrp
82 23 75 81 69 74 grpcld φrBaseQsBaseQxrJr=FxysJs=Fyx+GyBaseG
83 1 80 3 4 5 82 ghmquskerlem1 φrBaseQsBaseQxrJr=FxysJs=FyJx+GyG~QGK=Fx+Gy
84 23 75 9 ghmlin FGGrpHomHxBaseGyBaseGFx+Gy=Fx+HFy
85 80 69 74 84 syl3anc φrBaseQsBaseQxrJr=FxysJs=FyFx+Gy=Fx+HFy
86 79 83 85 3eqtrd φrBaseQsBaseQxrJr=FxysJs=FyJr+Qs=Fx+HFy
87 simpllr φrBaseQsBaseQxrJr=FxysJs=FyJr=Fx
88 simpr φrBaseQsBaseQxrJr=FxysJs=FyJs=Fy
89 87 88 oveq12d φrBaseQsBaseQxrJr=FxysJs=FyJr+HJs=Fx+HFy
90 86 89 eqtr4d φrBaseQsBaseQxrJr=FxysJs=FyJr+Qs=Jr+HJs
91 2 ad4antr φrBaseQsBaseQxrJr=FxFGGrpHomH
92 simpllr φrBaseQsBaseQxrJr=FxsBaseQ
93 1 91 3 4 5 92 ghmquskerlem2 φrBaseQsBaseQxrJr=FxysJs=Fy
94 90 93 r19.29a φrBaseQsBaseQxrJr=FxJr+Qs=Jr+HJs
95 51 adantr φrBaseQsBaseQxrJr=Fx
96 94 95 r19.29a φrBaseQsBaseQJr+Qs=Jr+HJs
97 96 anasss φrBaseQsBaseQJr+Qs=Jr+HJs
98 6 7 8 9 14 17 53 97 isghmd φJQGrpHomH