| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmqusker.1 |  | 
						
							| 2 |  | ghmqusker.f |  | 
						
							| 3 |  | ghmqusker.k |  | 
						
							| 4 |  | ghmqusker.q |  | 
						
							| 5 |  | ghmqusker.j |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 1 | ghmker |  | 
						
							| 11 | 2 10 | syl |  | 
						
							| 12 | 3 11 | eqeltrid |  | 
						
							| 13 | 4 | qusgrp |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 |  | ghmrn |  | 
						
							| 16 |  | subgrcl |  | 
						
							| 17 | 2 15 16 | 3syl |  | 
						
							| 18 | 2 | adantr |  | 
						
							| 19 | 18 | imaexd |  | 
						
							| 20 | 19 | uniexd |  | 
						
							| 21 | 5 | a1i |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 23 7 | ghmf |  | 
						
							| 25 | 2 24 | syl |  | 
						
							| 26 | 25 | frnd |  | 
						
							| 27 | 26 | ad3antrrr |  | 
						
							| 28 | 25 | ffnd |  | 
						
							| 29 | 28 | ad3antrrr |  | 
						
							| 30 | 4 | a1i |  | 
						
							| 31 |  | eqidd |  | 
						
							| 32 |  | ovexd |  | 
						
							| 33 |  | ghmgrp1 |  | 
						
							| 34 | 2 33 | syl |  | 
						
							| 35 | 30 31 32 34 | qusbas |  | 
						
							| 36 |  | nsgsubg |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 23 37 | eqger |  | 
						
							| 39 | 12 36 38 | 3syl |  | 
						
							| 40 | 39 | qsss |  | 
						
							| 41 | 35 40 | eqsstrrd |  | 
						
							| 42 | 41 | sselda |  | 
						
							| 43 | 42 | elpwid |  | 
						
							| 44 | 43 | sselda |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 29 45 | fnfvelrnd |  | 
						
							| 47 | 27 46 | sseldd |  | 
						
							| 48 | 22 47 | eqeltrd |  | 
						
							| 49 | 2 | adantr |  | 
						
							| 50 |  | simpr |  | 
						
							| 51 | 1 49 3 4 5 50 | ghmquskerlem2 |  | 
						
							| 52 | 48 51 | r19.29a |  | 
						
							| 53 | 20 21 52 | fmpt2d |  | 
						
							| 54 | 39 | ad6antr |  | 
						
							| 55 | 50 | ad5antr |  | 
						
							| 56 | 35 | ad6antr |  | 
						
							| 57 | 55 56 | eleqtrrd |  | 
						
							| 58 |  | simp-4r |  | 
						
							| 59 |  | qsel |  | 
						
							| 60 | 54 57 58 59 | syl3anc |  | 
						
							| 61 |  | simp-5r |  | 
						
							| 62 | 61 56 | eleqtrrd |  | 
						
							| 63 |  | simplr |  | 
						
							| 64 |  | qsel |  | 
						
							| 65 | 54 62 63 64 | syl3anc |  | 
						
							| 66 | 60 65 | oveq12d |  | 
						
							| 67 | 12 | ad6antr |  | 
						
							| 68 | 43 | ad5antr |  | 
						
							| 69 | 68 58 | sseldd |  | 
						
							| 70 | 41 | sselda |  | 
						
							| 71 | 70 | elpwid |  | 
						
							| 72 | 71 | adantlr |  | 
						
							| 73 | 72 | ad4antr |  | 
						
							| 74 | 73 63 | sseldd |  | 
						
							| 75 |  | eqid |  | 
						
							| 76 | 4 23 75 8 | qusadd |  | 
						
							| 77 | 67 69 74 76 | syl3anc |  | 
						
							| 78 | 66 77 | eqtrd |  | 
						
							| 79 | 78 | fveq2d |  | 
						
							| 80 | 2 | ad6antr |  | 
						
							| 81 | 80 33 | syl |  | 
						
							| 82 | 23 75 81 69 74 | grpcld |  | 
						
							| 83 | 1 80 3 4 5 82 | ghmquskerlem1 |  | 
						
							| 84 | 23 75 9 | ghmlin |  | 
						
							| 85 | 80 69 74 84 | syl3anc |  | 
						
							| 86 | 79 83 85 | 3eqtrd |  | 
						
							| 87 |  | simpllr |  | 
						
							| 88 |  | simpr |  | 
						
							| 89 | 87 88 | oveq12d |  | 
						
							| 90 | 86 89 | eqtr4d |  | 
						
							| 91 | 2 | ad4antr |  | 
						
							| 92 |  | simpllr |  | 
						
							| 93 | 1 91 3 4 5 92 | ghmquskerlem2 |  | 
						
							| 94 | 90 93 | r19.29a |  | 
						
							| 95 | 51 | adantr |  | 
						
							| 96 | 94 95 | r19.29a |  | 
						
							| 97 | 96 | anasss |  | 
						
							| 98 | 6 7 8 9 14 17 53 97 | isghmd |  |