Metamath Proof Explorer


Theorem gpgprismgr4cycllem10

Description: Lemma 10 for gpgprismgr4cycl0 . (Contributed by AV, 5-Nov-2025)

Ref Expression
Hypotheses gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
gpgprismgr4cycl.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
gpgprismgr4cycl.g No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
Assertion gpgprismgr4cycllem10 N 3 X 0 ..^ F iEdg G F X = P X P X + 1

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
2 gpgprismgr4cycl.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
3 gpgprismgr4cycl.g Could not format G = ( N gPetersenGr 1 ) : No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
4 3 fveq2i Could not format ( iEdg ` G ) = ( iEdg ` ( N gPetersenGr 1 ) ) : No typesetting found for |- ( iEdg ` G ) = ( iEdg ` ( N gPetersenGr 1 ) ) with typecode |-
5 4 a1i Could not format ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( iEdg ` G ) = ( iEdg ` ( N gPetersenGr 1 ) ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( iEdg ` G ) = ( iEdg ` ( N gPetersenGr 1 ) ) ) with typecode |-
6 eluzge3nn N 3 N
7 1elfzo1ceilhalf1 N 3 1 1 ..^ N 2
8 6 7 jca N 3 N 1 1 ..^ N 2
9 8 adantr N 3 X 0 ..^ F N 1 1 ..^ N 2
10 eqid 1 ..^ N 2 = 1 ..^ N 2
11 eqid 0 ..^ N = 0 ..^ N
12 10 11 gpgiedg Could not format ( ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr 1 ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ) : No typesetting found for |- ( ( N e. NN /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr 1 ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ) with typecode |-
13 9 12 syl Could not format ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( iEdg ` ( N gPetersenGr 1 ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( iEdg ` ( N gPetersenGr 1 ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + 1 ) mod N ) >. } ) } ) ) with typecode |-
14 5 13 eqtrd N 3 X 0 ..^ F iEdg G = I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + 1 mod N
15 14 fveq1d N 3 X 0 ..^ F iEdg G F X = I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + 1 mod N F X
16 2 gpgprismgr4cycllem3 N 3 X 0 ..^ 4 F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
17 2 gpgprismgr4cycllem1 F = 4
18 17 oveq2i 0 ..^ F = 0 ..^ 4
19 18 eleq2i X 0 ..^ F X 0 ..^ 4
20 19 anbi2i N 3 X 0 ..^ F N 3 X 0 ..^ 4
21 eqeq1 e = F X e = 0 x 0 x + 1 mod N F X = 0 x 0 x + 1 mod N
22 eqeq1 e = F X e = 0 x 1 x F X = 0 x 1 x
23 eqeq1 e = F X e = 1 x 1 x + 1 mod N F X = 1 x 1 x + 1 mod N
24 21 22 23 3orbi123d e = F X e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + 1 mod N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
25 24 rexbidv e = F X x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + 1 mod N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
26 25 elrab F X e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + 1 mod N F X 𝒫 0 1 × 0 ..^ N x 0 ..^ N F X = 0 x 0 x + 1 mod N F X = 0 x 1 x F X = 1 x 1 x + 1 mod N
27 16 20 26 3imtr4i N 3 X 0 ..^ F F X e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + 1 mod N
28 fvresi F X e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + 1 mod N I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + 1 mod N F X = F X
29 27 28 syl N 3 X 0 ..^ F I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + 1 mod N F X = F X
30 15 29 eqtrd N 3 X 0 ..^ F iEdg G F X = F X
31 fzo0to42pr 0 ..^ 4 = 0 1 2 3
32 31 eleq2i X 0 ..^ 4 X 0 1 2 3
33 elun X 0 1 2 3 X 0 1 X 2 3
34 19 32 33 3bitri X 0 ..^ F X 0 1 X 2 3
35 elpri X 0 1 X = 0 X = 1
36 prex 0 0 0 1 V
37 s4fv0 0 0 0 1 V ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 0 = 0 0 0 1
38 36 37 ax-mp ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 0 = 0 0 0 1
39 2 fveq1i F 0 = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 0
40 1 fveq1i P 0 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0
41 opex 0 0 V
42 df-s5 ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ = ⟨“ 0 0 0 1 1 1 1 0 ”⟩ ++ ⟨“ 0 0 ”⟩
43 s4cli ⟨“ 0 0 0 1 1 1 1 0 ”⟩ Word V
44 s4len ⟨“ 0 0 0 1 1 1 1 0 ”⟩ = 4
45 s4fv0 0 0 V ⟨“ 0 0 0 1 1 1 1 0 ”⟩ 0 = 0 0
46 0nn0 0 0
47 4pos 0 < 4
48 42 43 44 45 46 47 cats1fv 0 0 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0 = 0 0
49 41 48 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 0 = 0 0
50 40 49 eqtri P 0 = 0 0
51 1 fveq1i P 1 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 1
52 opex 0 1 V
53 s4fv1 0 1 V ⟨“ 0 0 0 1 1 1 1 0 ”⟩ 1 = 0 1
54 1nn0 1 0
55 1lt4 1 < 4
56 42 43 44 53 54 55 cats1fv 0 1 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 1 = 0 1
57 52 56 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 1 = 0 1
58 51 57 eqtri P 1 = 0 1
59 50 58 preq12i P 0 P 1 = 0 0 0 1
60 38 39 59 3eqtr4i F 0 = P 0 P 1
61 fveq2 X = 0 F X = F 0
62 fveq2 X = 0 P X = P 0
63 fv0p1e1 X = 0 P X + 1 = P 1
64 62 63 preq12d X = 0 P X P X + 1 = P 0 P 1
65 60 61 64 3eqtr4a X = 0 F X = P X P X + 1
66 prex 0 1 1 1 V
67 s4fv1 0 1 1 1 V ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 1 = 0 1 1 1
68 66 67 ax-mp ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 1 = 0 1 1 1
69 2 fveq1i F 1 = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 1
70 1 fveq1i P 2 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 2
71 opex 1 1 V
72 s4fv2 1 1 V ⟨“ 0 0 0 1 1 1 1 0 ”⟩ 2 = 1 1
73 2nn0 2 0
74 2lt4 2 < 4
75 42 43 44 72 73 74 cats1fv 1 1 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 2 = 1 1
76 71 75 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 2 = 1 1
77 70 76 eqtri P 2 = 1 1
78 58 77 preq12i P 1 P 2 = 0 1 1 1
79 68 69 78 3eqtr4i F 1 = P 1 P 2
80 fveq2 X = 1 F X = F 1
81 fveq2 X = 1 P X = P 1
82 oveq1 X = 1 X + 1 = 1 + 1
83 1p1e2 1 + 1 = 2
84 82 83 eqtrdi X = 1 X + 1 = 2
85 84 fveq2d X = 1 P X + 1 = P 2
86 81 85 preq12d X = 1 P X P X + 1 = P 1 P 2
87 79 80 86 3eqtr4a X = 1 F X = P X P X + 1
88 65 87 jaoi X = 0 X = 1 F X = P X P X + 1
89 35 88 syl X 0 1 F X = P X P X + 1
90 elpri X 2 3 X = 2 X = 3
91 prex 1 1 1 0 V
92 s4fv2 1 1 1 0 V ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 2 = 1 1 1 0
93 91 92 ax-mp ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 2 = 1 1 1 0
94 2 fveq1i F 2 = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 2
95 1 fveq1i P 3 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 3
96 opex 1 0 V
97 s4fv3 1 0 V ⟨“ 0 0 0 1 1 1 1 0 ”⟩ 3 = 1 0
98 3nn0 3 0
99 3lt4 3 < 4
100 42 43 44 97 98 99 cats1fv 1 0 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 3 = 1 0
101 96 100 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 3 = 1 0
102 95 101 eqtri P 3 = 1 0
103 77 102 preq12i P 2 P 3 = 1 1 1 0
104 93 94 103 3eqtr4i F 2 = P 2 P 3
105 fveq2 X = 2 F X = F 2
106 fveq2 X = 2 P X = P 2
107 oveq1 X = 2 X + 1 = 2 + 1
108 2p1e3 2 + 1 = 3
109 107 108 eqtrdi X = 2 X + 1 = 3
110 109 fveq2d X = 2 P X + 1 = P 3
111 106 110 preq12d X = 2 P X P X + 1 = P 2 P 3
112 104 105 111 3eqtr4a X = 2 F X = P X P X + 1
113 prex 1 0 0 0 V
114 s4fv3 1 0 0 0 V ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 3 = 1 0 0 0
115 113 114 ax-mp ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 3 = 1 0 0 0
116 2 fveq1i F 3 = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩ 3
117 1 fveq1i P 4 = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4
118 42 43 44 cats1fvn 0 0 V ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4 = 0 0
119 41 118 ax-mp ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩ 4 = 0 0
120 117 119 eqtri P 4 = 0 0
121 102 120 preq12i P 3 P 4 = 1 0 0 0
122 115 116 121 3eqtr4i F 3 = P 3 P 4
123 fveq2 X = 3 F X = F 3
124 fveq2 X = 3 P X = P 3
125 oveq1 X = 3 X + 1 = 3 + 1
126 3p1e4 3 + 1 = 4
127 125 126 eqtrdi X = 3 X + 1 = 4
128 127 fveq2d X = 3 P X + 1 = P 4
129 124 128 preq12d X = 3 P X P X + 1 = P 3 P 4
130 122 123 129 3eqtr4a X = 3 F X = P X P X + 1
131 112 130 jaoi X = 2 X = 3 F X = P X P X + 1
132 90 131 syl X 2 3 F X = P X P X + 1
133 89 132 jaoi X 0 1 X 2 3 F X = P X P X + 1
134 34 133 sylbi X 0 ..^ F F X = P X P X + 1
135 134 adantl N 3 X 0 ..^ F F X = P X P X + 1
136 30 135 eqtrd N 3 X 0 ..^ F iEdg G F X = P X P X + 1