Metamath Proof Explorer


Theorem gsumply1eq

Description: Two univariate polynomials given as (finitely supported) sum of scaled monomials are equal iff the corresponding coefficients are equal. (Contributed by AV, 21-Nov-2019)

Ref Expression
Hypotheses gsumply1eq.p P=Poly1R
gsumply1eq.x X=var1R
gsumply1eq.e ×˙=mulGrpP
gsumply1eq.r φRRing
gsumply1eq.k K=BaseR
gsumply1eq.m ˙=P
gsumply1eq.0 0˙=0R
gsumply1eq.a φk0AK
gsumply1eq.f1 φfinSupp0˙k0A
gsumply1eq.b φk0BK
gsumply1eq.f2 φfinSupp0˙k0B
gsumply1eq.o φO=Pk0A˙k×˙X
gsumply1eq.q φQ=Pk0B˙k×˙X
Assertion gsumply1eq φO=Qk0A=B

Proof

Step Hyp Ref Expression
1 gsumply1eq.p P=Poly1R
2 gsumply1eq.x X=var1R
3 gsumply1eq.e ×˙=mulGrpP
4 gsumply1eq.r φRRing
5 gsumply1eq.k K=BaseR
6 gsumply1eq.m ˙=P
7 gsumply1eq.0 0˙=0R
8 gsumply1eq.a φk0AK
9 gsumply1eq.f1 φfinSupp0˙k0A
10 gsumply1eq.b φk0BK
11 gsumply1eq.f2 φfinSupp0˙k0B
12 gsumply1eq.o φO=Pk0A˙k×˙X
13 gsumply1eq.q φQ=Pk0B˙k×˙X
14 eqid BaseP=BaseP
15 1 14 2 3 4 5 6 7 8 9 gsumsmonply1 φPk0A˙k×˙XBaseP
16 12 15 eqeltrd φOBaseP
17 1 14 2 3 4 5 6 7 10 11 gsumsmonply1 φPk0B˙k×˙XBaseP
18 13 17 eqeltrd φQBaseP
19 eqid coe1O=coe1O
20 eqid coe1Q=coe1Q
21 1 14 19 20 ply1coe1eq RRingOBasePQBasePk0coe1Ok=coe1QkO=Q
22 21 bicomd RRingOBasePQBasePO=Qk0coe1Ok=coe1Qk
23 4 16 18 22 syl3anc φO=Qk0coe1Ok=coe1Qk
24 12 adantr φk0O=Pk0A˙k×˙X
25 nfcv _lA˙k×˙X
26 nfcsb1v _kl/kA
27 nfcv _k˙
28 nfcv _kl×˙X
29 26 27 28 nfov _kl/kA˙l×˙X
30 csbeq1a k=lA=l/kA
31 oveq1 k=lk×˙X=l×˙X
32 30 31 oveq12d k=lA˙k×˙X=l/kA˙l×˙X
33 25 29 32 cbvmpt k0A˙k×˙X=l0l/kA˙l×˙X
34 33 oveq2i Pk0A˙k×˙X=Pl0l/kA˙l×˙X
35 24 34 eqtrdi φk0O=Pl0l/kA˙l×˙X
36 35 fveq2d φk0coe1O=coe1Pl0l/kA˙l×˙X
37 36 fveq1d φk0coe1Ok=coe1Pl0l/kA˙l×˙Xk
38 4 adantr φk0RRing
39 nfv lAK
40 26 nfel1 kl/kAK
41 30 eleq1d k=lAKl/kAK
42 39 40 41 cbvralw k0AKl0l/kAK
43 8 42 sylib φl0l/kAK
44 43 adantr φk0l0l/kAK
45 nfcv _lA
46 45 26 30 cbvmpt k0A=l0l/kA
47 46 9 eqbrtrrid φfinSupp0˙l0l/kA
48 47 adantr φk0finSupp0˙l0l/kA
49 simpr φk0k0
50 1 14 2 3 38 5 6 7 44 48 49 gsummoncoe1 φk0coe1Pl0l/kA˙l×˙Xk=k/ll/kA
51 csbcow k/ll/kA=k/kA
52 csbid k/kA=A
53 51 52 eqtri k/ll/kA=A
54 50 53 eqtrdi φk0coe1Pl0l/kA˙l×˙Xk=A
55 37 54 eqtrd φk0coe1Ok=A
56 13 adantr φk0Q=Pk0B˙k×˙X
57 nfcv _lB˙k×˙X
58 nfcsb1v _kl/kB
59 58 27 28 nfov _kl/kB˙l×˙X
60 csbeq1a k=lB=l/kB
61 60 31 oveq12d k=lB˙k×˙X=l/kB˙l×˙X
62 57 59 61 cbvmpt k0B˙k×˙X=l0l/kB˙l×˙X
63 62 a1i φk0k0B˙k×˙X=l0l/kB˙l×˙X
64 63 oveq2d φk0Pk0B˙k×˙X=Pl0l/kB˙l×˙X
65 56 64 eqtrd φk0Q=Pl0l/kB˙l×˙X
66 65 fveq2d φk0coe1Q=coe1Pl0l/kB˙l×˙X
67 66 fveq1d φk0coe1Qk=coe1Pl0l/kB˙l×˙Xk
68 nfv lBK
69 58 nfel1 kl/kBK
70 60 eleq1d k=lBKl/kBK
71 68 69 70 cbvralw k0BKl0l/kBK
72 10 71 sylib φl0l/kBK
73 72 adantr φk0l0l/kBK
74 nfcv _lB
75 74 58 60 cbvmpt k0B=l0l/kB
76 75 11 eqbrtrrid φfinSupp0˙l0l/kB
77 76 adantr φk0finSupp0˙l0l/kB
78 1 14 2 3 38 5 6 7 73 77 49 gsummoncoe1 φk0coe1Pl0l/kB˙l×˙Xk=k/ll/kB
79 csbcow k/ll/kB=k/kB
80 csbid k/kB=B
81 79 80 eqtri k/ll/kB=B
82 78 81 eqtrdi φk0coe1Pl0l/kB˙l×˙Xk=B
83 67 82 eqtrd φk0coe1Qk=B
84 55 83 eqeq12d φk0coe1Ok=coe1QkA=B
85 84 ralbidva φk0coe1Ok=coe1Qkk0A=B
86 23 85 bitrd φO=Qk0A=B