Metamath Proof Explorer


Theorem hashreprin

Description: Express a sum of representations over an intersection using a product of the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses reprval.a φA
reprval.m φM
reprval.s φS0
hashreprin.b φBFin
hashreprin.1 φB
Assertion hashreprin φABreprSM=cBreprSMa0..^S𝟙Aca

Proof

Step Hyp Ref Expression
1 reprval.a φA
2 reprval.m φM
3 reprval.s φS0
4 hashreprin.b φBFin
5 hashreprin.1 φB
6 5 2 3 4 reprfi φBreprSMFin
7 inss2 ABB
8 7 a1i φABB
9 5 2 3 8 reprss φABreprSMBreprSM
10 6 9 ssfid φABreprSMFin
11 1cnd φ1
12 fsumconst ABreprSMFin1cABreprSM1=ABreprSM1
13 10 11 12 syl2anc φcABreprSM1=ABreprSM1
14 11 ralrimivw φcABreprSM1
15 6 olcd φBreprSM0BreprSMFin
16 sumss2 ABreprSMBreprSMcABreprSM1BreprSM0BreprSMFincABreprSM1=cBreprSMifcABreprSM10
17 9 14 15 16 syl21anc φcABreprSM1=cBreprSMifcABreprSM10
18 5 2 3 reprinrn φcBAreprSMcBreprSMrancA
19 incom BA=AB
20 19 oveq1i BAreprSM=ABreprSM
21 20 eleq2i cBAreprSMcABreprSM
22 21 bibi1i cBAreprSMcBreprSMrancAcABreprSMcBreprSMrancA
23 22 imbi2i φcBAreprSMcBreprSMrancAφcABreprSMcBreprSMrancA
24 18 23 mpbi φcABreprSMcBreprSMrancA
25 24 baibd φcBreprSMcABreprSMrancA
26 25 ifbid φcBreprSMifcABreprSM10=ifrancA10
27 nnex V
28 27 a1i φV
29 28 ralrimivw φcBreprSMV
30 29 r19.21bi φcBreprSMV
31 fzofi 0..^SFin
32 31 a1i φcBreprSM0..^SFin
33 1 adantr φcBreprSMA
34 5 adantr φcBreprSMB
35 2 adantr φcBreprSMM
36 3 adantr φcBreprSMS0
37 simpr φcBreprSMcBreprSM
38 34 35 36 37 reprf φcBreprSMc:0..^SB
39 38 34 fssd φcBreprSMc:0..^S
40 30 32 33 39 prodindf φcBreprSMa0..^S𝟙Aca=ifrancA10
41 26 40 eqtr4d φcBreprSMifcABreprSM10=a0..^S𝟙Aca
42 41 sumeq2dv φcBreprSMifcABreprSM10=cBreprSMa0..^S𝟙Aca
43 17 42 eqtrd φcABreprSM1=cBreprSMa0..^S𝟙Aca
44 hashcl ABreprSMFinABreprSM0
45 10 44 syl φABreprSM0
46 45 nn0cnd φABreprSM
47 46 mulridd φABreprSM1=ABreprSM
48 13 43 47 3eqtr3rd φABreprSM=cBreprSMa0..^S𝟙Aca