Metamath Proof Explorer


Theorem hdmap1l6h

Description: Lemmma for hdmap1l6 . Part (6) of Baer p. 48 line 2. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H = LHyp K
hdmap1l6.u U = DVecH K W
hdmap1l6.v V = Base U
hdmap1l6.p + ˙ = + U
hdmap1l6.s - ˙ = - U
hdmap1l6c.o 0 ˙ = 0 U
hdmap1l6.n N = LSpan U
hdmap1l6.c C = LCDual K W
hdmap1l6.d D = Base C
hdmap1l6.a ˙ = + C
hdmap1l6.r R = - C
hdmap1l6.q Q = 0 C
hdmap1l6.l L = LSpan C
hdmap1l6.m M = mapd K W
hdmap1l6.i I = HDMap1 K W
hdmap1l6.k φ K HL W H
hdmap1l6.f φ F D
hdmap1l6cl.x φ X V 0 ˙
hdmap1l6.mn φ M N X = L F
hdmap1l6d.xn φ ¬ X N Y Z
hdmap1l6d.yz φ N Y = N Z
hdmap1l6d.y φ Y V 0 ˙
hdmap1l6d.z φ Z V 0 ˙
hdmap1l6d.w φ w V 0 ˙
hdmap1l6d.wn φ ¬ w N X Y
Assertion hdmap1l6h φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H = LHyp K
2 hdmap1l6.u U = DVecH K W
3 hdmap1l6.v V = Base U
4 hdmap1l6.p + ˙ = + U
5 hdmap1l6.s - ˙ = - U
6 hdmap1l6c.o 0 ˙ = 0 U
7 hdmap1l6.n N = LSpan U
8 hdmap1l6.c C = LCDual K W
9 hdmap1l6.d D = Base C
10 hdmap1l6.a ˙ = + C
11 hdmap1l6.r R = - C
12 hdmap1l6.q Q = 0 C
13 hdmap1l6.l L = LSpan C
14 hdmap1l6.m M = mapd K W
15 hdmap1l6.i I = HDMap1 K W
16 hdmap1l6.k φ K HL W H
17 hdmap1l6.f φ F D
18 hdmap1l6cl.x φ X V 0 ˙
19 hdmap1l6.mn φ M N X = L F
20 hdmap1l6d.xn φ ¬ X N Y Z
21 hdmap1l6d.yz φ N Y = N Z
22 hdmap1l6d.y φ Y V 0 ˙
23 hdmap1l6d.z φ Z V 0 ˙
24 hdmap1l6d.w φ w V 0 ˙
25 hdmap1l6d.wn φ ¬ w N X Y
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6g φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z
27 1 8 16 lcdlmod φ C LMod
28 1 2 16 dvhlvec φ U LVec
29 24 eldifad φ w V
30 18 eldifad φ X V
31 22 eldifad φ Y V
32 3 7 28 29 30 31 25 lspindpi φ N w N X N w N Y
33 32 simpld φ N w N X
34 33 necomd φ N X N w
35 1 2 3 6 7 8 9 13 14 15 16 17 19 34 18 29 hdmap1cl φ I X F w D
36 23 eldifad φ Z V
37 3 7 28 30 31 36 20 lspindpi φ N X N Y N X N Z
38 37 simpld φ N X N Y
39 1 2 3 6 7 8 9 13 14 15 16 17 19 38 18 31 hdmap1cl φ I X F Y D
40 37 simprd φ N X N Z
41 1 2 3 6 7 8 9 13 14 15 16 17 19 40 18 36 hdmap1cl φ I X F Z D
42 9 10 lmodass C LMod I X F w D I X F Y D I X F Z D I X F w ˙ I X F Y ˙ I X F Z = I X F w ˙ I X F Y ˙ I X F Z
43 27 35 39 41 42 syl13anc φ I X F w ˙ I X F Y ˙ I X F Z = I X F w ˙ I X F Y ˙ I X F Z
44 26 43 eqtrd φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z
45 3 4 6 7 28 18 22 23 24 21 38 25 mapdindp1 φ N X N Y + ˙ Z
46 1 2 16 dvhlmod φ U LMod
47 3 4 lmodvacl U LMod Y V Z V Y + ˙ Z V
48 46 31 36 47 syl3anc φ Y + ˙ Z V
49 1 2 3 6 7 8 9 13 14 15 16 17 19 45 18 48 hdmap1cl φ I X F Y + ˙ Z D
50 9 10 lmodvacl C LMod I X F Y D I X F Z D I X F Y ˙ I X F Z D
51 27 39 41 50 syl3anc φ I X F Y ˙ I X F Z D
52 9 10 lmodlcan C LMod I X F Y + ˙ Z D I X F Y ˙ I X F Z D I X F w D I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z I X F Y + ˙ Z = I X F Y ˙ I X F Z
53 27 49 51 35 52 syl13anc φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z I X F Y + ˙ Z = I X F Y ˙ I X F Z
54 44 53 mpbid φ I X F Y + ˙ Z = I X F Y ˙ I X F Z