Metamath Proof Explorer


Theorem hgmaprnlem4N

Description: Lemma for hgmaprnN . Eliminate s . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H=LHypK
hgmaprnlem1.u U=DVecHKW
hgmaprnlem1.v V=BaseU
hgmaprnlem1.r R=ScalarU
hgmaprnlem1.b B=BaseR
hgmaprnlem1.t ·˙=U
hgmaprnlem1.o 0˙=0U
hgmaprnlem1.c C=LCDualKW
hgmaprnlem1.d D=BaseC
hgmaprnlem1.p P=ScalarC
hgmaprnlem1.a A=BaseP
hgmaprnlem1.e ˙=C
hgmaprnlem1.q Q=0C
hgmaprnlem1.s S=HDMapKW
hgmaprnlem1.g G=HGMapKW
hgmaprnlem1.k φKHLWH
hgmaprnlem1.z φzA
hgmaprnlem1.t2 φtV0˙
Assertion hgmaprnlem4N φzranG

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H=LHypK
2 hgmaprnlem1.u U=DVecHKW
3 hgmaprnlem1.v V=BaseU
4 hgmaprnlem1.r R=ScalarU
5 hgmaprnlem1.b B=BaseR
6 hgmaprnlem1.t ·˙=U
7 hgmaprnlem1.o 0˙=0U
8 hgmaprnlem1.c C=LCDualKW
9 hgmaprnlem1.d D=BaseC
10 hgmaprnlem1.p P=ScalarC
11 hgmaprnlem1.a A=BaseP
12 hgmaprnlem1.e ˙=C
13 hgmaprnlem1.q Q=0C
14 hgmaprnlem1.s S=HDMapKW
15 hgmaprnlem1.g G=HGMapKW
16 hgmaprnlem1.k φKHLWH
17 hgmaprnlem1.z φzA
18 hgmaprnlem1.t2 φtV0˙
19 1 8 16 lcdlmod φCLMod
20 18 eldifad φtV
21 1 2 3 8 9 14 16 20 hdmapcl φStD
22 9 10 12 11 lmodvscl CLModzAStDz˙StD
23 19 17 21 22 syl3anc φz˙StD
24 1 8 9 14 16 hdmaprnN φranS=D
25 23 24 eleqtrrd φz˙StranS
26 1 2 3 14 16 hdmapfnN φSFnV
27 fvelrnb SFnVz˙StranSsVSs=z˙St
28 26 27 syl φz˙StranSsVSs=z˙St
29 25 28 mpbid φsVSs=z˙St
30 16 3ad2ant1 φsVSs=z˙StKHLWH
31 17 3ad2ant1 φsVSs=z˙StzA
32 18 3ad2ant1 φsVSs=z˙SttV0˙
33 simp2 φsVSs=z˙StsV
34 simp3 φsVSs=z˙StSs=z˙St
35 eqid mapdKW=mapdKW
36 eqid LSpanU=LSpanU
37 eqid LSpanC=LSpanC
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31 32 33 34 35 36 37 hgmaprnlem3N φsVSs=z˙StzranG
39 38 rexlimdv3a φsVSs=z˙StzranG
40 29 39 mpd φzranG