Metamath Proof Explorer


Theorem hoidmvval0

Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvval0.p jφ
hoidmvval0.l L=xFinax,bxifx=0kxvolakbk
hoidmvval0.x φXFin
hoidmvval0.a φA:X
hoidmvval0.b φB:X
hoidmvval0.j φjXBjAj
Assertion hoidmvval0 φALXB=0

Proof

Step Hyp Ref Expression
1 hoidmvval0.p jφ
2 hoidmvval0.l L=xFinax,bxifx=0kxvolakbk
3 hoidmvval0.x φXFin
4 hoidmvval0.a φA:X
5 hoidmvval0.b φB:X
6 hoidmvval0.j φjXBjAj
7 id φφ
8 fveq2 k=jBk=Bj
9 fveq2 k=jAk=Aj
10 8 9 breq12d k=jBkAkBjAj
11 10 cbvrexvw kXBkAkjXBjAj
12 rexn0 kXBkAkX
13 11 12 sylbir jXBjAjX
14 6 13 syl φX
15 3 adantr φXXFin
16 simpr φXX
17 4 adantr φXA:X
18 5 adantr φXB:X
19 2 15 16 17 18 hoidmvn0val φXALXB=kXvolAkBk
20 6 adantr φXjXBjAj
21 nfv jX
22 1 21 nfan jφX
23 nfv jkXvolAkBk=0
24 nfv kφjXBjAj
25 nfcv _kvolAjBj
26 3 3ad2ant1 φjXBjAjXFin
27 4 ffvelcdmda φkXAk
28 5 ffvelcdmda φkXBk
29 volicore AkBkvolAkBk
30 27 28 29 syl2anc φkXvolAkBk
31 30 recnd φkXvolAkBk
32 31 3ad2antl1 φjXBjAjkXvolAkBk
33 9 8 oveq12d k=jAkBk=AjBj
34 33 fveq2d k=jvolAkBk=volAjBj
35 simp2 φjXBjAjjX
36 4 ffvelcdmda φjXAj
37 36 3adant3 φjXBjAjAj
38 5 ffvelcdmda φjXBj
39 38 3adant3 φjXBjAjBj
40 volico AjBjvolAjBj=ifAj<BjBjAj0
41 37 39 40 syl2anc φjXBjAjvolAjBj=ifAj<BjBjAj0
42 simp3 φjXBjAjBjAj
43 39 37 lenltd φjXBjAjBjAj¬Aj<Bj
44 42 43 mpbid φjXBjAj¬Aj<Bj
45 44 iffalsed φjXBjAjifAj<BjBjAj0=0
46 41 45 eqtrd φjXBjAjvolAjBj=0
47 24 25 26 32 34 35 46 fprod0 φjXBjAjkXvolAkBk=0
48 47 3adant1r φXjXBjAjkXvolAkBk=0
49 48 3exp φXjXBjAjkXvolAkBk=0
50 22 23 49 rexlimd φXjXBjAjkXvolAkBk=0
51 20 50 mpd φXkXvolAkBk=0
52 eqidd φX0=0
53 19 51 52 3eqtrd φXALXB=0
54 7 14 53 syl2anc φALXB=0