| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoidmvval0.p |  | 
						
							| 2 |  | hoidmvval0.l |  | 
						
							| 3 |  | hoidmvval0.x |  | 
						
							| 4 |  | hoidmvval0.a |  | 
						
							| 5 |  | hoidmvval0.b |  | 
						
							| 6 |  | hoidmvval0.j |  | 
						
							| 7 |  | id |  | 
						
							| 8 |  | fveq2 |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 | 8 9 | breq12d |  | 
						
							| 11 | 10 | cbvrexvw |  | 
						
							| 12 |  | rexn0 |  | 
						
							| 13 | 11 12 | sylbir |  | 
						
							| 14 | 6 13 | syl |  | 
						
							| 15 | 3 | adantr |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 4 | adantr |  | 
						
							| 18 | 5 | adantr |  | 
						
							| 19 | 2 15 16 17 18 | hoidmvn0val |  | 
						
							| 20 | 6 | adantr |  | 
						
							| 21 |  | nfv |  | 
						
							| 22 | 1 21 | nfan |  | 
						
							| 23 |  | nfv |  | 
						
							| 24 |  | nfv |  | 
						
							| 25 |  | nfcv |  | 
						
							| 26 | 3 | 3ad2ant1 |  | 
						
							| 27 | 4 | ffvelcdmda |  | 
						
							| 28 | 5 | ffvelcdmda |  | 
						
							| 29 |  | volicore |  | 
						
							| 30 | 27 28 29 | syl2anc |  | 
						
							| 31 | 30 | recnd |  | 
						
							| 32 | 31 | 3ad2antl1 |  | 
						
							| 33 | 9 8 | oveq12d |  | 
						
							| 34 | 33 | fveq2d |  | 
						
							| 35 |  | simp2 |  | 
						
							| 36 | 4 | ffvelcdmda |  | 
						
							| 37 | 36 | 3adant3 |  | 
						
							| 38 | 5 | ffvelcdmda |  | 
						
							| 39 | 38 | 3adant3 |  | 
						
							| 40 |  | volico |  | 
						
							| 41 | 37 39 40 | syl2anc |  | 
						
							| 42 |  | simp3 |  | 
						
							| 43 | 39 37 | lenltd |  | 
						
							| 44 | 42 43 | mpbid |  | 
						
							| 45 | 44 | iffalsed |  | 
						
							| 46 | 41 45 | eqtrd |  | 
						
							| 47 | 24 25 26 32 34 35 46 | fprod0 |  | 
						
							| 48 | 47 | 3adant1r |  | 
						
							| 49 | 48 | 3exp |  | 
						
							| 50 | 22 23 49 | rexlimd |  | 
						
							| 51 | 20 50 | mpd |  | 
						
							| 52 |  | eqidd |  | 
						
							| 53 | 19 51 52 | 3eqtrd |  | 
						
							| 54 | 7 14 53 | syl2anc |  |