Metamath Proof Explorer


Theorem hoidmvval0

Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvval0.p j φ
hoidmvval0.l L = x Fin a x , b x if x = 0 k x vol a k b k
hoidmvval0.x φ X Fin
hoidmvval0.a φ A : X
hoidmvval0.b φ B : X
hoidmvval0.j φ j X B j A j
Assertion hoidmvval0 φ A L X B = 0

Proof

Step Hyp Ref Expression
1 hoidmvval0.p j φ
2 hoidmvval0.l L = x Fin a x , b x if x = 0 k x vol a k b k
3 hoidmvval0.x φ X Fin
4 hoidmvval0.a φ A : X
5 hoidmvval0.b φ B : X
6 hoidmvval0.j φ j X B j A j
7 id φ φ
8 fveq2 k = j B k = B j
9 fveq2 k = j A k = A j
10 8 9 breq12d k = j B k A k B j A j
11 10 cbvrexvw k X B k A k j X B j A j
12 rexn0 k X B k A k X
13 11 12 sylbir j X B j A j X
14 6 13 syl φ X
15 3 adantr φ X X Fin
16 simpr φ X X
17 4 adantr φ X A : X
18 5 adantr φ X B : X
19 2 15 16 17 18 hoidmvn0val φ X A L X B = k X vol A k B k
20 6 adantr φ X j X B j A j
21 nfv j X
22 1 21 nfan j φ X
23 nfv j k X vol A k B k = 0
24 nfv k φ j X B j A j
25 nfcv _ k vol A j B j
26 3 3ad2ant1 φ j X B j A j X Fin
27 4 ffvelrnda φ k X A k
28 5 ffvelrnda φ k X B k
29 volicore A k B k vol A k B k
30 27 28 29 syl2anc φ k X vol A k B k
31 30 recnd φ k X vol A k B k
32 31 3ad2antl1 φ j X B j A j k X vol A k B k
33 9 8 oveq12d k = j A k B k = A j B j
34 33 fveq2d k = j vol A k B k = vol A j B j
35 simp2 φ j X B j A j j X
36 4 ffvelrnda φ j X A j
37 36 3adant3 φ j X B j A j A j
38 5 ffvelrnda φ j X B j
39 38 3adant3 φ j X B j A j B j
40 volico A j B j vol A j B j = if A j < B j B j A j 0
41 37 39 40 syl2anc φ j X B j A j vol A j B j = if A j < B j B j A j 0
42 simp3 φ j X B j A j B j A j
43 39 37 lenltd φ j X B j A j B j A j ¬ A j < B j
44 42 43 mpbid φ j X B j A j ¬ A j < B j
45 44 iffalsed φ j X B j A j if A j < B j B j A j 0 = 0
46 41 45 eqtrd φ j X B j A j vol A j B j = 0
47 24 25 26 32 34 35 46 fprod0 φ j X B j A j k X vol A k B k = 0
48 47 3adant1r φ X j X B j A j k X vol A k B k = 0
49 48 3exp φ X j X B j A j k X vol A k B k = 0
50 22 23 49 rexlimd φ X j X B j A j k X vol A k B k = 0
51 20 50 mpd φ X k X vol A k B k = 0
52 eqidd φ X 0 = 0
53 19 51 52 3eqtrd φ X A L X B = 0
54 7 14 53 syl2anc φ A L X B = 0