Description: If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ibliooicc.1 | |
|
ibliooicc.2 | |
||
ibliooicc.3 | |
||
ibliooicc.4 | |
||
Assertion | ibliooicc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibliooicc.1 | |
|
2 | ibliooicc.2 | |
|
3 | ibliooicc.3 | |
|
4 | ibliooicc.4 | |
|
5 | ioossicc | |
|
6 | 5 | a1i | |
7 | 1 2 | iccssred | |
8 | 1 | rexrd | |
9 | 2 | rexrd | |
10 | icc0 | |
|
11 | 8 9 10 | syl2anc | |
12 | 11 | biimpar | |
13 | 12 | difeq1d | |
14 | 0dif | |
|
15 | 0ss | |
|
16 | 14 15 | eqsstri | |
17 | 13 16 | eqsstrdi | |
18 | ssid | |
|
19 | 8 | adantr | |
20 | 9 | adantr | |
21 | simpr | |
|
22 | iccdifioo | |
|
23 | 19 20 21 22 | syl3anc | |
24 | 18 23 | sseqtrid | |
25 | 17 24 2 1 | ltlecasei | |
26 | prssi | |
|
27 | 1 2 26 | syl2anc | |
28 | prfi | |
|
29 | ovolfi | |
|
30 | 28 27 29 | sylancr | |
31 | ovolssnul | |
|
32 | 25 27 30 31 | syl3anc | |
33 | 6 7 32 4 | itgss3 | |
34 | 33 | simpld | |
35 | 3 34 | mpbid | |