| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ibliooicc.1 |  | 
						
							| 2 |  | ibliooicc.2 |  | 
						
							| 3 |  | ibliooicc.3 |  | 
						
							| 4 |  | ibliooicc.4 |  | 
						
							| 5 |  | ioossicc |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 | 1 2 | iccssred |  | 
						
							| 8 | 1 | rexrd |  | 
						
							| 9 | 2 | rexrd |  | 
						
							| 10 |  | icc0 |  | 
						
							| 11 | 8 9 10 | syl2anc |  | 
						
							| 12 | 11 | biimpar |  | 
						
							| 13 | 12 | difeq1d |  | 
						
							| 14 |  | 0dif |  | 
						
							| 15 |  | 0ss |  | 
						
							| 16 | 14 15 | eqsstri |  | 
						
							| 17 | 13 16 | eqsstrdi |  | 
						
							| 18 |  | ssid |  | 
						
							| 19 | 8 | adantr |  | 
						
							| 20 | 9 | adantr |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 |  | iccdifioo |  | 
						
							| 23 | 19 20 21 22 | syl3anc |  | 
						
							| 24 | 18 23 | sseqtrid |  | 
						
							| 25 | 17 24 2 1 | ltlecasei |  | 
						
							| 26 |  | prssi |  | 
						
							| 27 | 1 2 26 | syl2anc |  | 
						
							| 28 |  | prfi |  | 
						
							| 29 |  | ovolfi |  | 
						
							| 30 | 28 27 29 | sylancr |  | 
						
							| 31 |  | ovolssnul |  | 
						
							| 32 | 25 27 30 31 | syl3anc |  | 
						
							| 33 | 6 7 32 4 | itgss3 |  | 
						
							| 34 | 33 | simpld |  | 
						
							| 35 | 3 34 | mpbid |  |