Metamath Proof Explorer


Theorem ibliooicc

Description: If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ibliooicc.1 φA
ibliooicc.2 φB
ibliooicc.3 φxABC𝐿1
ibliooicc.4 φxABC
Assertion ibliooicc φxABC𝐿1

Proof

Step Hyp Ref Expression
1 ibliooicc.1 φA
2 ibliooicc.2 φB
3 ibliooicc.3 φxABC𝐿1
4 ibliooicc.4 φxABC
5 ioossicc ABAB
6 5 a1i φABAB
7 1 2 iccssred φAB
8 1 rexrd φA*
9 2 rexrd φB*
10 icc0 A*B*AB=B<A
11 8 9 10 syl2anc φAB=B<A
12 11 biimpar φB<AAB=
13 12 difeq1d φB<AABAB=AB
14 0dif AB=
15 0ss AB
16 14 15 eqsstri ABAB
17 13 16 eqsstrdi φB<AABABAB
18 ssid ABABABAB
19 8 adantr φABA*
20 9 adantr φABB*
21 simpr φABAB
22 iccdifioo A*B*ABABAB=AB
23 19 20 21 22 syl3anc φABABAB=AB
24 18 23 sseqtrid φABABABAB
25 17 24 2 1 ltlecasei φABABAB
26 prssi ABAB
27 1 2 26 syl2anc φAB
28 prfi ABFin
29 ovolfi ABFinABvol*AB=0
30 28 27 29 sylancr φvol*AB=0
31 ovolssnul ABABABABvol*AB=0vol*ABAB=0
32 25 27 30 31 syl3anc φvol*ABAB=0
33 6 7 32 4 itgss3 φxABC𝐿1xABC𝐿1ABCdx=ABCdx
34 33 simpld φxABC𝐿1xABC𝐿1
35 3 34 mpbid φxABC𝐿1