Metamath Proof Explorer


Theorem icceuelpart

Description: An element of a partitioned half-open interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020)

Ref Expression
Hypotheses iccpartiun.m φM
iccpartiun.p φPRePartM
Assertion icceuelpart φXP0PM∃!i0..^MXPiPi+1

Proof

Step Hyp Ref Expression
1 iccpartiun.m φM
2 iccpartiun.p φPRePartM
3 2 adantr φXP0PMPRePartM
4 iccelpart MpRePartMXp0pMi0..^MXpipi+1
5 1 4 syl φpRePartMXp0pMi0..^MXpipi+1
6 5 adantr φXP0PMpRePartMXp0pMi0..^MXpipi+1
7 fveq1 p=Pp0=P0
8 fveq1 p=PpM=PM
9 7 8 oveq12d p=Pp0pM=P0PM
10 9 eleq2d p=PXp0pMXP0PM
11 fveq1 p=Ppi=Pi
12 fveq1 p=Ppi+1=Pi+1
13 11 12 oveq12d p=Ppipi+1=PiPi+1
14 13 eleq2d p=PXpipi+1XPiPi+1
15 14 rexbidv p=Pi0..^MXpipi+1i0..^MXPiPi+1
16 10 15 imbi12d p=PXp0pMi0..^MXpipi+1XP0PMi0..^MXPiPi+1
17 16 rspcva PRePartMpRePartMXp0pMi0..^MXpipi+1XP0PMi0..^MXPiPi+1
18 17 adantld PRePartMpRePartMXp0pMi0..^MXpipi+1φXP0PMi0..^MXPiPi+1
19 18 com12 φXP0PMPRePartMpRePartMXp0pMi0..^MXpipi+1i0..^MXPiPi+1
20 3 6 19 mp2and φXP0PMi0..^MXPiPi+1
21 1 adantr φi0..^MM
22 2 adantr φi0..^MPRePartM
23 elfzofz i0..^Mi0M
24 23 adantl φi0..^Mi0M
25 21 22 24 iccpartxr φi0..^MPi*
26 fzofzp1 i0..^Mi+10M
27 26 adantl φi0..^Mi+10M
28 21 22 27 iccpartxr φi0..^MPi+1*
29 25 28 jca φi0..^MPi*Pi+1*
30 29 adantrr φi0..^Mj0..^MPi*Pi+1*
31 elico1 Pi*Pi+1*XPiPi+1X*PiXX<Pi+1
32 30 31 syl φi0..^Mj0..^MXPiPi+1X*PiXX<Pi+1
33 1 adantr φj0..^MM
34 2 adantr φj0..^MPRePartM
35 elfzofz j0..^Mj0M
36 35 adantl φj0..^Mj0M
37 33 34 36 iccpartxr φj0..^MPj*
38 fzofzp1 j0..^Mj+10M
39 38 adantl φj0..^Mj+10M
40 33 34 39 iccpartxr φj0..^MPj+1*
41 37 40 jca φj0..^MPj*Pj+1*
42 41 adantrl φi0..^Mj0..^MPj*Pj+1*
43 elico1 Pj*Pj+1*XPjPj+1X*PjXX<Pj+1
44 42 43 syl φi0..^Mj0..^MXPjPj+1X*PjXX<Pj+1
45 32 44 anbi12d φi0..^Mj0..^MXPiPi+1XPjPj+1X*PiXX<Pi+1X*PjXX<Pj+1
46 elfzoelz i0..^Mi
47 46 zred i0..^Mi
48 elfzoelz j0..^Mj
49 48 zred j0..^Mj
50 47 49 anim12i i0..^Mj0..^Mij
51 50 adantl φi0..^Mj0..^Mij
52 lttri4 iji<ji=jj<i
53 51 52 syl φi0..^Mj0..^Mi<ji=jj<i
54 1 2 icceuelpartlem φi0..^Mj0..^Mi<jPi+1Pj
55 54 imp31 φi0..^Mj0..^Mi<jPi+1Pj
56 simpl X*φi0..^Mj0..^MX*
57 28 adantrr φi0..^Mj0..^MPi+1*
58 57 adantl X*φi0..^Mj0..^MPi+1*
59 37 adantrl φi0..^Mj0..^MPj*
60 59 adantl X*φi0..^Mj0..^MPj*
61 nltle2tri X*Pi+1*Pj*¬X<Pi+1Pi+1PjPjX
62 56 58 60 61 syl3anc X*φi0..^Mj0..^M¬X<Pi+1Pi+1PjPjX
63 62 pm2.21d X*φi0..^Mj0..^MX<Pi+1Pi+1PjPjXi=j
64 63 3expd X*φi0..^Mj0..^MX<Pi+1Pi+1PjPjXi=j
65 64 ex X*φi0..^Mj0..^MX<Pi+1Pi+1PjPjXi=j
66 65 com23 X*X<Pi+1φi0..^Mj0..^MPi+1PjPjXi=j
67 66 com25 X*PjXφi0..^Mj0..^MPi+1PjX<Pi+1i=j
68 67 imp4b X*PjXφi0..^Mj0..^MPi+1PjX<Pi+1i=j
69 68 com23 X*PjXX<Pi+1φi0..^Mj0..^MPi+1Pji=j
70 69 3adant3 X*PjXX<Pj+1X<Pi+1φi0..^Mj0..^MPi+1Pji=j
71 70 com12 X<Pi+1X*PjXX<Pj+1φi0..^Mj0..^MPi+1Pji=j
72 71 3ad2ant3 X*PiXX<Pi+1X*PjXX<Pj+1φi0..^Mj0..^MPi+1Pji=j
73 72 imp X*PiXX<Pi+1X*PjXX<Pj+1φi0..^Mj0..^MPi+1Pji=j
74 73 com12 φi0..^Mj0..^MPi+1PjX*PiXX<Pi+1X*PjXX<Pj+1i=j
75 55 74 syldan φi0..^Mj0..^Mi<jX*PiXX<Pi+1X*PjXX<Pj+1i=j
76 75 expcom i<jφi0..^Mj0..^MX*PiXX<Pi+1X*PjXX<Pj+1i=j
77 2a1 i=jφi0..^Mj0..^MX*PiXX<Pi+1X*PjXX<Pj+1i=j
78 1 2 icceuelpartlem φj0..^Mi0..^Mj<iPj+1Pi
79 78 ancomsd φi0..^Mj0..^Mj<iPj+1Pi
80 79 imp31 φi0..^Mj0..^Mj<iPj+1Pi
81 40 adantrl φi0..^Mj0..^MPj+1*
82 81 adantl X*φi0..^Mj0..^MPj+1*
83 25 adantrr φi0..^Mj0..^MPi*
84 83 adantl X*φi0..^Mj0..^MPi*
85 nltle2tri X*Pj+1*Pi*¬X<Pj+1Pj+1PiPiX
86 56 82 84 85 syl3anc X*φi0..^Mj0..^M¬X<Pj+1Pj+1PiPiX
87 86 pm2.21d X*φi0..^Mj0..^MX<Pj+1Pj+1PiPiXi=j
88 87 3expd X*φi0..^Mj0..^MX<Pj+1Pj+1PiPiXi=j
89 88 ex X*φi0..^Mj0..^MX<Pj+1Pj+1PiPiXi=j
90 89 com23 X*X<Pj+1φi0..^Mj0..^MPj+1PiPiXi=j
91 90 imp4b X*X<Pj+1φi0..^Mj0..^MPj+1PiPiXi=j
92 91 com23 X*X<Pj+1PiXφi0..^Mj0..^MPj+1Pii=j
93 92 3adant2 X*PjXX<Pj+1PiXφi0..^Mj0..^MPj+1Pii=j
94 93 com12 PiXX*PjXX<Pj+1φi0..^Mj0..^MPj+1Pii=j
95 94 3ad2ant2 X*PiXX<Pi+1X*PjXX<Pj+1φi0..^Mj0..^MPj+1Pii=j
96 95 imp X*PiXX<Pi+1X*PjXX<Pj+1φi0..^Mj0..^MPj+1Pii=j
97 96 com12 φi0..^Mj0..^MPj+1PiX*PiXX<Pi+1X*PjXX<Pj+1i=j
98 80 97 syldan φi0..^Mj0..^Mj<iX*PiXX<Pi+1X*PjXX<Pj+1i=j
99 98 expcom j<iφi0..^Mj0..^MX*PiXX<Pi+1X*PjXX<Pj+1i=j
100 76 77 99 3jaoi i<ji=jj<iφi0..^Mj0..^MX*PiXX<Pi+1X*PjXX<Pj+1i=j
101 53 100 mpcom φi0..^Mj0..^MX*PiXX<Pi+1X*PjXX<Pj+1i=j
102 45 101 sylbid φi0..^Mj0..^MXPiPi+1XPjPj+1i=j
103 102 ralrimivva φi0..^Mj0..^MXPiPi+1XPjPj+1i=j
104 103 adantr φXP0PMi0..^Mj0..^MXPiPi+1XPjPj+1i=j
105 fveq2 i=jPi=Pj
106 fvoveq1 i=jPi+1=Pj+1
107 105 106 oveq12d i=jPiPi+1=PjPj+1
108 107 eleq2d i=jXPiPi+1XPjPj+1
109 108 reu4 ∃!i0..^MXPiPi+1i0..^MXPiPi+1i0..^Mj0..^MXPiPi+1XPjPj+1i=j
110 20 104 109 sylanbrc φXP0PM∃!i0..^MXPiPi+1