| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccshift.1 |
|
| 2 |
|
iccshift.2 |
|
| 3 |
|
iccshift.3 |
|
| 4 |
|
eqeq1 |
|
| 5 |
4
|
rexbidv |
|
| 6 |
5
|
elrab |
|
| 7 |
|
simprr |
|
| 8 |
|
nfv |
|
| 9 |
|
nfv |
|
| 10 |
|
nfre1 |
|
| 11 |
9 10
|
nfan |
|
| 12 |
8 11
|
nfan |
|
| 13 |
|
nfv |
|
| 14 |
|
simp3 |
|
| 15 |
1 2
|
iccssred |
|
| 16 |
15
|
sselda |
|
| 17 |
3
|
adantr |
|
| 18 |
16 17
|
readdcld |
|
| 19 |
1
|
adantr |
|
| 20 |
|
simpr |
|
| 21 |
2
|
adantr |
|
| 22 |
|
elicc2 |
|
| 23 |
19 21 22
|
syl2anc |
|
| 24 |
20 23
|
mpbid |
|
| 25 |
24
|
simp2d |
|
| 26 |
19 16 17 25
|
leadd1dd |
|
| 27 |
24
|
simp3d |
|
| 28 |
16 21 17 27
|
leadd1dd |
|
| 29 |
18 26 28
|
3jca |
|
| 30 |
29
|
3adant3 |
|
| 31 |
1 3
|
readdcld |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
2 3
|
readdcld |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
|
elicc2 |
|
| 36 |
32 34 35
|
syl2anc |
|
| 37 |
30 36
|
mpbird |
|
| 38 |
14 37
|
eqeltrd |
|
| 39 |
38
|
3exp |
|
| 40 |
39
|
adantr |
|
| 41 |
12 13 40
|
rexlimd |
|
| 42 |
7 41
|
mpd |
|
| 43 |
6 42
|
sylan2b |
|
| 44 |
31
|
adantr |
|
| 45 |
33
|
adantr |
|
| 46 |
|
simpr |
|
| 47 |
|
eliccre |
|
| 48 |
44 45 46 47
|
syl3anc |
|
| 49 |
48
|
recnd |
|
| 50 |
1
|
adantr |
|
| 51 |
2
|
adantr |
|
| 52 |
3
|
adantr |
|
| 53 |
48 52
|
resubcld |
|
| 54 |
1
|
recnd |
|
| 55 |
3
|
recnd |
|
| 56 |
54 55
|
pncand |
|
| 57 |
56
|
eqcomd |
|
| 58 |
57
|
adantr |
|
| 59 |
|
elicc2 |
|
| 60 |
44 45 59
|
syl2anc |
|
| 61 |
46 60
|
mpbid |
|
| 62 |
61
|
simp2d |
|
| 63 |
44 48 52 62
|
lesub1dd |
|
| 64 |
58 63
|
eqbrtrd |
|
| 65 |
61
|
simp3d |
|
| 66 |
48 45 52 65
|
lesub1dd |
|
| 67 |
2
|
recnd |
|
| 68 |
67 55
|
pncand |
|
| 69 |
68
|
adantr |
|
| 70 |
66 69
|
breqtrd |
|
| 71 |
50 51 53 64 70
|
eliccd |
|
| 72 |
55
|
adantr |
|
| 73 |
49 72
|
npcand |
|
| 74 |
73
|
eqcomd |
|
| 75 |
|
oveq1 |
|
| 76 |
75
|
rspceeqv |
|
| 77 |
71 74 76
|
syl2anc |
|
| 78 |
49 77 6
|
sylanbrc |
|
| 79 |
43 78
|
impbida |
|
| 80 |
79
|
eqrdv |
|
| 81 |
80
|
eqcomd |
|