Metamath Proof Explorer


Theorem imasf1obl

Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses imasf1obl.u φU=F𝑠R
imasf1obl.v φV=BaseR
imasf1obl.f φF:V1-1 ontoB
imasf1obl.r φRZ
imasf1obl.e E=distRV×V
imasf1obl.d D=distU
imasf1obl.m φE∞MetV
imasf1obl.x φPV
imasf1obl.s φS*
Assertion imasf1obl φFPballDS=FPballES

Proof

Step Hyp Ref Expression
1 imasf1obl.u φU=F𝑠R
2 imasf1obl.v φV=BaseR
3 imasf1obl.f φF:V1-1 ontoB
4 imasf1obl.r φRZ
5 imasf1obl.e E=distRV×V
6 imasf1obl.d D=distU
7 imasf1obl.m φE∞MetV
8 imasf1obl.x φPV
9 imasf1obl.s φS*
10 f1ocnvfv2 F:V1-1 ontoBxBFF-1x=x
11 3 10 sylan φxBFF-1x=x
12 11 oveq2d φxBFPDFF-1x=FPDx
13 1 adantr φxBU=F𝑠R
14 2 adantr φxBV=BaseR
15 3 adantr φxBF:V1-1 ontoB
16 4 adantr φxBRZ
17 7 adantr φxBE∞MetV
18 8 adantr φxBPV
19 f1ocnv F:V1-1 ontoBF-1:B1-1 ontoV
20 3 19 syl φF-1:B1-1 ontoV
21 f1of F-1:B1-1 ontoVF-1:BV
22 20 21 syl φF-1:BV
23 22 ffvelcdmda φxBF-1xV
24 13 14 15 16 5 6 17 18 23 imasdsf1o φxBFPDFF-1x=PEF-1x
25 12 24 eqtr3d φxBFPDx=PEF-1x
26 25 breq1d φxBFPDx<SPEF-1x<S
27 9 adantr φxBS*
28 elbl2 E∞MetVS*PVF-1xVF-1xPballESPEF-1x<S
29 17 27 18 23 28 syl22anc φxBF-1xPballESPEF-1x<S
30 26 29 bitr4d φxBFPDx<SF-1xPballES
31 30 pm5.32da φxBFPDx<SxBF-1xPballES
32 1 2 3 4 5 6 7 imasf1oxmet φD∞MetB
33 f1of F:V1-1 ontoBF:VB
34 3 33 syl φF:VB
35 34 8 ffvelcdmd φFPB
36 elbl D∞MetBFPBS*xFPballDSxBFPDx<S
37 32 35 9 36 syl3anc φxFPballDSxBFPDx<S
38 f1ofn F-1:B1-1 ontoVF-1FnB
39 elpreima F-1FnBxF-1-1PballESxBF-1xPballES
40 20 38 39 3syl φxF-1-1PballESxBF-1xPballES
41 31 37 40 3bitr4d φxFPballDSxF-1-1PballES
42 41 eqrdv φFPballDS=F-1-1PballES
43 imacnvcnv F-1-1PballES=FPballES
44 42 43 eqtrdi φFPballDS=FPballES