Metamath Proof Explorer


Theorem infpssrlem4

Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Hypotheses infpssrlem.a φ B A
infpssrlem.c φ F : B 1-1 onto A
infpssrlem.d φ C A B
infpssrlem.e G = rec F -1 C ω
Assertion infpssrlem4 φ M ω N M G M G N

Proof

Step Hyp Ref Expression
1 infpssrlem.a φ B A
2 infpssrlem.c φ F : B 1-1 onto A
3 infpssrlem.d φ C A B
4 infpssrlem.e G = rec F -1 C ω
5 fveq2 c = G c = G
6 5 neeq1d c = G c G b G G b
7 6 raleqbi1dv c = b c G c G b b G G b
8 7 imbi2d c = φ b c G c G b φ b G G b
9 fveq2 c = d G c = G d
10 9 neeq1d c = d G c G b G d G b
11 10 raleqbi1dv c = d b c G c G b b d G d G b
12 11 imbi2d c = d φ b c G c G b φ b d G d G b
13 fveq2 c = suc d G c = G suc d
14 13 neeq1d c = suc d G c G b G suc d G b
15 14 raleqbi1dv c = suc d b c G c G b b suc d G suc d G b
16 15 imbi2d c = suc d φ b c G c G b φ b suc d G suc d G b
17 fveq2 c = M G c = G M
18 17 neeq1d c = M G c G b G M G b
19 18 raleqbi1dv c = M b c G c G b b M G M G b
20 19 imbi2d c = M φ b c G c G b φ b M G M G b
21 ral0 b G G b
22 21 a1i φ b G G b
23 f1ocnv F : B 1-1 onto A F -1 : A 1-1 onto B
24 f1of F -1 : A 1-1 onto B F -1 : A B
25 2 23 24 3syl φ F -1 : A B
26 25 adantl d ω φ F -1 : A B
27 1 2 3 4 infpssrlem3 φ G : ω A
28 27 ffvelrnda φ d ω G d A
29 28 ancoms d ω φ G d A
30 26 29 ffvelrnd d ω φ F -1 G d B
31 3 eldifbd φ ¬ C B
32 31 adantl d ω φ ¬ C B
33 nelne2 F -1 G d B ¬ C B F -1 G d C
34 30 32 33 syl2anc d ω φ F -1 G d C
35 1 2 3 4 infpssrlem2 d ω G suc d = F -1 G d
36 35 adantr d ω φ G suc d = F -1 G d
37 1 2 3 4 infpssrlem1 φ G = C
38 37 adantl d ω φ G = C
39 34 36 38 3netr4d d ω φ G suc d G
40 39 3adant3 d ω φ b d G d G b G suc d G
41 5 neeq2d c = G suc d G c G suc d G
42 40 41 syl5ibr c = d ω φ b d G d G b G suc d G c
43 42 adantrd c = d ω φ b d G d G b c suc d G suc d G c
44 simpr d ω c suc d c suc d
45 peano2 d ω suc d ω
46 45 adantr d ω c suc d suc d ω
47 elnn c suc d suc d ω c ω
48 44 46 47 syl2anc d ω c suc d c ω
49 48 3ad2antl1 d ω φ b d G d G b c suc d c ω
50 49 adantl c d ω φ b d G d G b c suc d c ω
51 simpl c d ω φ b d G d G b c suc d c
52 nnsuc c ω c b ω c = suc b
53 50 51 52 syl2anc c d ω φ b d G d G b c suc d b ω c = suc b
54 nfv b d ω
55 nfv b φ
56 nfra1 b b d G d G b
57 54 55 56 nf3an b d ω φ b d G d G b
58 nfv b c suc d
59 57 58 nfan b d ω φ b d G d G b c suc d
60 nfv b G suc d G c
61 simpl3 d ω φ b d G d G b suc b suc d b ω b d G d G b
62 simpr d ω suc b suc d suc b suc d
63 nnord d ω Ord d
64 63 adantr d ω suc b suc d Ord d
65 ordsucelsuc Ord d b d suc b suc d
66 64 65 syl d ω suc b suc d b d suc b suc d
67 62 66 mpbird d ω suc b suc d b d
68 67 3ad2antl1 d ω φ b d G d G b suc b suc d b d
69 68 adantrr d ω φ b d G d G b suc b suc d b ω b d
70 rsp b d G d G b b d G d G b
71 61 69 70 sylc d ω φ b d G d G b suc b suc d b ω G d G b
72 f1of1 F -1 : A 1-1 onto B F -1 : A 1-1 B
73 2 23 72 3syl φ F -1 : A 1-1 B
74 73 ad2antlr d ω φ b ω F -1 : A 1-1 B
75 29 adantr d ω φ b ω G d A
76 27 ffvelrnda φ b ω G b A
77 76 adantll d ω φ b ω G b A
78 f1fveq F -1 : A 1-1 B G d A G b A F -1 G d = F -1 G b G d = G b
79 74 75 77 78 syl12anc d ω φ b ω F -1 G d = F -1 G b G d = G b
80 79 necon3bid d ω φ b ω F -1 G d F -1 G b G d G b
81 80 biimprd d ω φ b ω G d G b F -1 G d F -1 G b
82 35 adantr d ω b ω G suc d = F -1 G d
83 1 2 3 4 infpssrlem2 b ω G suc b = F -1 G b
84 83 adantl d ω b ω G suc b = F -1 G b
85 82 84 neeq12d d ω b ω G suc d G suc b F -1 G d F -1 G b
86 85 adantlr d ω φ b ω G suc d G suc b F -1 G d F -1 G b
87 81 86 sylibrd d ω φ b ω G d G b G suc d G suc b
88 87 adantrl d ω φ suc b suc d b ω G d G b G suc d G suc b
89 88 3adantl3 d ω φ b d G d G b suc b suc d b ω G d G b G suc d G suc b
90 71 89 mpd d ω φ b d G d G b suc b suc d b ω G suc d G suc b
91 90 expr d ω φ b d G d G b suc b suc d b ω G suc d G suc b
92 eleq1 c = suc b c suc d suc b suc d
93 92 anbi2d c = suc b d ω φ b d G d G b c suc d d ω φ b d G d G b suc b suc d
94 fveq2 c = suc b G c = G suc b
95 94 neeq2d c = suc b G suc d G c G suc d G suc b
96 95 imbi2d c = suc b b ω G suc d G c b ω G suc d G suc b
97 93 96 imbi12d c = suc b d ω φ b d G d G b c suc d b ω G suc d G c d ω φ b d G d G b suc b suc d b ω G suc d G suc b
98 91 97 mpbiri c = suc b d ω φ b d G d G b c suc d b ω G suc d G c
99 98 com3l d ω φ b d G d G b c suc d b ω c = suc b G suc d G c
100 59 60 99 rexlimd d ω φ b d G d G b c suc d b ω c = suc b G suc d G c
101 100 adantl c d ω φ b d G d G b c suc d b ω c = suc b G suc d G c
102 53 101 mpd c d ω φ b d G d G b c suc d G suc d G c
103 102 ex c d ω φ b d G d G b c suc d G suc d G c
104 43 103 pm2.61ine d ω φ b d G d G b c suc d G suc d G c
105 104 ralrimiva d ω φ b d G d G b c suc d G suc d G c
106 fveq2 c = b G c = G b
107 106 neeq2d c = b G suc d G c G suc d G b
108 107 cbvralvw c suc d G suc d G c b suc d G suc d G b
109 105 108 sylib d ω φ b d G d G b b suc d G suc d G b
110 109 3exp d ω φ b d G d G b b suc d G suc d G b
111 110 a2d d ω φ b d G d G b φ b suc d G suc d G b
112 8 12 16 20 22 111 finds M ω φ b M G M G b
113 112 impcom φ M ω b M G M G b
114 fveq2 b = N G b = G N
115 114 neeq2d b = N G M G b G M G N
116 115 rspccv b M G M G b N M G M G N
117 113 116 syl φ M ω N M G M G N
118 117 3impia φ M ω N M G M G N