Metamath Proof Explorer


Theorem initoeu2

Description: Initial objects are essentially unique, if A is an initial object, then so is every object that is isomorphic to A. Proposition 7.3 (2) in Adamek p. 102. (Contributed by AV, 10-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φCCat
initoeu1.a φAInitOC
initoeu2.i φA𝑐CB
Assertion initoeu2 φBInitOC

Proof

Step Hyp Ref Expression
1 initoeu1.c φCCat
2 initoeu1.a φAInitOC
3 initoeu2.i φA𝑐CB
4 ciclcl CCatA𝑐CBABaseC
5 1 4 sylan φA𝑐CBABaseC
6 cicrcl CCatA𝑐CBBBaseC
7 1 6 sylan φA𝑐CBBBaseC
8 1 adantr φABaseCBBaseCCCat
9 cicsym CCatA𝑐CBB𝑐CA
10 8 9 sylan φABaseCBBaseCA𝑐CBB𝑐CA
11 eqid IsoC=IsoC
12 eqid BaseC=BaseC
13 simprr φABaseCBBaseCBBaseC
14 simprl φABaseCBBaseCABaseC
15 11 12 8 13 14 cic φABaseCBBaseCB𝑐CAkkBIsoCA
16 eqid HomC=HomC
17 12 16 1 isinitoi φAInitOCABaseCaBaseC∃!ffAHomCa
18 2 17 mpdan φABaseCaBaseC∃!ffAHomCa
19 oveq2 a=bAHomCa=AHomCb
20 19 eleq2d a=bfAHomCafAHomCb
21 20 eubidv a=b∃!ffAHomCa∃!ffAHomCb
22 21 rspcva bBaseCaBaseC∃!ffAHomCa∃!ffAHomCb
23 nfv hfAHomCb
24 nfv fhAHomCb
25 eleq1w f=hfAHomCbhAHomCb
26 23 24 25 cbveuw ∃!ffAHomCb∃!hhAHomCb
27 euex ∃!hhAHomCbhhAHomCb
28 1 adantr φABaseCBBaseCbBaseCCCat
29 simpr ABaseCBBaseCBBaseC
30 29 ad2antrl φABaseCBBaseCbBaseCBBaseC
31 simprll φABaseCBBaseCbBaseCABaseC
32 12 16 11 28 30 31 isohom φABaseCBBaseCbBaseCBIsoCABHomCA
33 32 sselda φABaseCBBaseCbBaseCkBIsoCAkBHomCA
34 eqid compC=compC
35 28 ad2antrr φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbCCat
36 30 ad2antrr φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbBBaseC
37 31 ad2antrr φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbABaseC
38 simprr φABaseCBBaseCbBaseCbBaseC
39 38 ad2antrr φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbbBaseC
40 simprl φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbkBHomCA
41 simprr φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbhAHomCb
42 12 16 34 35 36 37 39 40 41 catcocl φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbhBAcompCbkBHomCb
43 simp-4l φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbhBAcompCbkBHomCbφ
44 df-3an ABaseCBBaseCbBaseCABaseCBBaseCbBaseC
45 44 biimpri ABaseCBBaseCbBaseCABaseCBBaseCbBaseC
46 45 ad4antlr φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbhBAcompCbkBHomCbABaseCBBaseCbBaseC
47 simpr φABaseCBBaseCbBaseCkBIsoCAkBIsoCA
48 47 ad2antrr φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbhBAcompCbkBHomCbkBIsoCA
49 41 adantr φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbhBAcompCbkBHomCbhAHomCb
50 simpr φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbhBAcompCbkBHomCbhBAcompCbkBHomCb
51 1 2 12 16 11 34 initoeu2lem2 φABaseCBBaseCbBaseCkBIsoCAhAHomCbhBAcompCbkBHomCb∃!ffAHomCb∃!ggBHomCb
52 43 46 48 49 50 51 syl113anc φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCbhBAcompCbkBHomCb∃!ffAHomCb∃!ggBHomCb
53 42 52 mpdan φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCb∃!ffAHomCb∃!ggBHomCb
54 53 ex φABaseCBBaseCbBaseCkBIsoCAkBHomCAhAHomCb∃!ffAHomCb∃!ggBHomCb
55 33 54 mpand φABaseCBBaseCbBaseCkBIsoCAhAHomCb∃!ffAHomCb∃!ggBHomCb
56 55 ex φABaseCBBaseCbBaseCkBIsoCAhAHomCb∃!ffAHomCb∃!ggBHomCb
57 56 com23 φABaseCBBaseCbBaseChAHomCbkBIsoCA∃!ffAHomCb∃!ggBHomCb
58 57 ex φABaseCBBaseCbBaseChAHomCbkBIsoCA∃!ffAHomCb∃!ggBHomCb
59 58 com15 ∃!ffAHomCbABaseCBBaseCbBaseChAHomCbkBIsoCAφ∃!ggBHomCb
60 59 expd ∃!ffAHomCbABaseCBBaseCbBaseChAHomCbkBIsoCAφ∃!ggBHomCb
61 60 com24 ∃!ffAHomCbhAHomCbbBaseCABaseCBBaseCkBIsoCAφ∃!ggBHomCb
62 61 com12 hAHomCb∃!ffAHomCbbBaseCABaseCBBaseCkBIsoCAφ∃!ggBHomCb
63 62 exlimiv hhAHomCb∃!ffAHomCbbBaseCABaseCBBaseCkBIsoCAφ∃!ggBHomCb
64 27 63 syl ∃!hhAHomCb∃!ffAHomCbbBaseCABaseCBBaseCkBIsoCAφ∃!ggBHomCb
65 26 64 sylbi ∃!ffAHomCb∃!ffAHomCbbBaseCABaseCBBaseCkBIsoCAφ∃!ggBHomCb
66 65 pm2.43i ∃!ffAHomCbbBaseCABaseCBBaseCkBIsoCAφ∃!ggBHomCb
67 66 com12 bBaseC∃!ffAHomCbABaseCBBaseCkBIsoCAφ∃!ggBHomCb
68 67 adantr bBaseCaBaseC∃!ffAHomCa∃!ffAHomCbABaseCBBaseCkBIsoCAφ∃!ggBHomCb
69 22 68 mpd bBaseCaBaseC∃!ffAHomCaABaseCBBaseCkBIsoCAφ∃!ggBHomCb
70 69 ex bBaseCaBaseC∃!ffAHomCaABaseCBBaseCkBIsoCAφ∃!ggBHomCb
71 70 com15 φaBaseC∃!ffAHomCaABaseCBBaseCkBIsoCAbBaseC∃!ggBHomCb
72 71 adantld φABaseCaBaseC∃!ffAHomCaABaseCBBaseCkBIsoCAbBaseC∃!ggBHomCb
73 18 72 mpd φABaseCBBaseCkBIsoCAbBaseC∃!ggBHomCb
74 73 imp φABaseCBBaseCkBIsoCAbBaseC∃!ggBHomCb
75 74 exlimdv φABaseCBBaseCkkBIsoCAbBaseC∃!ggBHomCb
76 15 75 sylbid φABaseCBBaseCB𝑐CAbBaseC∃!ggBHomCb
77 76 adantr φABaseCBBaseCA𝑐CBB𝑐CAbBaseC∃!ggBHomCb
78 10 77 mpd φABaseCBBaseCA𝑐CBbBaseC∃!ggBHomCb
79 78 an32s φA𝑐CBABaseCBBaseCbBaseC∃!ggBHomCb
80 79 ralrimiv φA𝑐CBABaseCBBaseCbBaseC∃!ggBHomCb
81 1 ad2antrr φA𝑐CBABaseCBBaseCCCat
82 simprr φA𝑐CBABaseCBBaseCBBaseC
83 12 16 81 82 isinito φA𝑐CBABaseCBBaseCBInitOCbBaseC∃!ggBHomCb
84 80 83 mpbird φA𝑐CBABaseCBBaseCBInitOC
85 84 ex φA𝑐CBABaseCBBaseCBInitOC
86 5 7 85 mp2and φA𝑐CBBInitOC
87 3 86 mpdan φBInitOC