Metamath Proof Explorer


Theorem ipcnlem1

Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ipcn.v V=BaseW
ipcn.h ,˙=𝑖W
ipcn.d D=distW
ipcn.n N=normW
ipcn.t T=R2NA+1
ipcn.u U=R2NB+T
ipcn.w φWCPreHil
ipcn.a φAV
ipcn.b φBV
ipcn.r φR+
Assertion ipcnlem1 φr+xVyVADx<rBDy<rA,˙Bx,˙y<R

Proof

Step Hyp Ref Expression
1 ipcn.v V=BaseW
2 ipcn.h ,˙=𝑖W
3 ipcn.d D=distW
4 ipcn.n N=normW
5 ipcn.t T=R2NA+1
6 ipcn.u U=R2NB+T
7 ipcn.w φWCPreHil
8 ipcn.a φAV
9 ipcn.b φBV
10 ipcn.r φR+
11 10 rphalfcld φR2+
12 cphnlm WCPreHilWNrmMod
13 7 12 syl φWNrmMod
14 nlmngp WNrmModWNrmGrp
15 13 14 syl φWNrmGrp
16 1 4 nmcl WNrmGrpAVNA
17 15 8 16 syl2anc φNA
18 1 4 nmge0 WNrmGrpAV0NA
19 15 8 18 syl2anc φ0NA
20 17 19 ge0p1rpd φNA+1+
21 11 20 rpdivcld φR2NA+1+
22 5 21 eqeltrid φT+
23 1 4 nmcl WNrmGrpBVNB
24 15 9 23 syl2anc φNB
25 22 rpred φT
26 24 25 readdcld φNB+T
27 0red φ0
28 1 4 nmge0 WNrmGrpBV0NB
29 15 9 28 syl2anc φ0NB
30 24 22 ltaddrpd φNB<NB+T
31 27 24 26 29 30 lelttrd φ0<NB+T
32 26 31 elrpd φNB+T+
33 11 32 rpdivcld φR2NB+T+
34 6 33 eqeltrid φU+
35 22 34 ifcld φifTUTU+
36 7 adantr φxVyVADx<ifTUTUBDy<ifTUTUWCPreHil
37 8 adantr φxVyVADx<ifTUTUBDy<ifTUTUAV
38 9 adantr φxVyVADx<ifTUTUBDy<ifTUTUBV
39 10 adantr φxVyVADx<ifTUTUBDy<ifTUTUR+
40 simprll φxVyVADx<ifTUTUBDy<ifTUTUxV
41 simprlr φxVyVADx<ifTUTUBDy<ifTUTUyV
42 15 adantr φxVyVADx<ifTUTUBDy<ifTUTUWNrmGrp
43 ngpms WNrmGrpWMetSp
44 42 43 syl φxVyVADx<ifTUTUBDy<ifTUTUWMetSp
45 1 3 mscl WMetSpAVxVADx
46 44 37 40 45 syl3anc φxVyVADx<ifTUTUBDy<ifTUTUADx
47 35 adantr φxVyVADx<ifTUTUBDy<ifTUTUifTUTU+
48 47 rpred φxVyVADx<ifTUTUBDy<ifTUTUifTUTU
49 34 rpred φU
50 49 adantr φxVyVADx<ifTUTUBDy<ifTUTUU
51 simprrl φxVyVADx<ifTUTUBDy<ifTUTUADx<ifTUTU
52 25 adantr φxVyVADx<ifTUTUBDy<ifTUTUT
53 min2 TUifTUTUU
54 52 50 53 syl2anc φxVyVADx<ifTUTUBDy<ifTUTUifTUTUU
55 46 48 50 51 54 ltletrd φxVyVADx<ifTUTUBDy<ifTUTUADx<U
56 15 43 syl φWMetSp
57 56 adantr φxVyVADx<ifTUTUBDy<ifTUTUWMetSp
58 1 3 mscl WMetSpBVyVBDy
59 57 38 41 58 syl3anc φxVyVADx<ifTUTUBDy<ifTUTUBDy
60 simprrr φxVyVADx<ifTUTUBDy<ifTUTUBDy<ifTUTU
61 min1 TUifTUTUT
62 52 50 61 syl2anc φxVyVADx<ifTUTUBDy<ifTUTUifTUTUT
63 59 48 52 60 62 ltletrd φxVyVADx<ifTUTUBDy<ifTUTUBDy<T
64 1 2 3 4 5 6 36 37 38 39 40 41 55 63 ipcnlem2 φxVyVADx<ifTUTUBDy<ifTUTUA,˙Bx,˙y<R
65 64 expr φxVyVADx<ifTUTUBDy<ifTUTUA,˙Bx,˙y<R
66 65 ralrimivva φxVyVADx<ifTUTUBDy<ifTUTUA,˙Bx,˙y<R
67 breq2 r=ifTUTUADx<rADx<ifTUTU
68 breq2 r=ifTUTUBDy<rBDy<ifTUTU
69 67 68 anbi12d r=ifTUTUADx<rBDy<rADx<ifTUTUBDy<ifTUTU
70 69 imbi1d r=ifTUTUADx<rBDy<rA,˙Bx,˙y<RADx<ifTUTUBDy<ifTUTUA,˙Bx,˙y<R
71 70 2ralbidv r=ifTUTUxVyVADx<rBDy<rA,˙Bx,˙y<RxVyVADx<ifTUTUBDy<ifTUTUA,˙Bx,˙y<R
72 71 rspcev ifTUTU+xVyVADx<ifTUTUBDy<ifTUTUA,˙Bx,˙y<Rr+xVyVADx<rBDy<rA,˙Bx,˙y<R
73 35 66 72 syl2anc φr+xVyVADx<rBDy<rA,˙Bx,˙y<R