Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | irredn0.i | |
|
irredrmul.u | |
||
irredrmul.t | |
||
Assertion | irredrmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irredn0.i | |
|
2 | irredrmul.u | |
|
3 | irredrmul.t | |
|
4 | simp2 | |
|
5 | simp1 | |
|
6 | simp3 | |
|
7 | eqid | |
|
8 | 2 7 | unitdvcl | |
9 | 8 | 3com23 | |
10 | 9 | 3expia | |
11 | 5 6 10 | syl2anc | |
12 | eqid | |
|
13 | 1 12 | irredcl | |
14 | 13 | 3ad2ant2 | |
15 | 12 2 7 3 | dvrcan3 | |
16 | 5 14 6 15 | syl3anc | |
17 | 16 | eleq1d | |
18 | 11 17 | sylibd | |
19 | 5 | ad2antrr | |
20 | eldifi | |
|
21 | 20 | ad2antrl | |
22 | 6 | ad2antrr | |
23 | 12 2 7 | dvrcl | |
24 | 19 21 22 23 | syl3anc | |
25 | eldifn | |
|
26 | 25 | ad2antrl | |
27 | 2 3 | unitmulcl | |
28 | 27 | 3com23 | |
29 | 28 | 3expia | |
30 | 19 22 29 | syl2anc | |
31 | 12 2 7 3 | dvrcan1 | |
32 | 19 21 22 31 | syl3anc | |
33 | 32 | eleq1d | |
34 | 30 33 | sylibd | |
35 | 26 34 | mtod | |
36 | 24 35 | eldifd | |
37 | simprr | |
|
38 | 37 | oveq1d | |
39 | eldifi | |
|
40 | 39 | ad2antlr | |
41 | 12 2 7 3 | dvrass | |
42 | 19 40 21 22 41 | syl13anc | |
43 | 16 | ad2antrr | |
44 | 38 42 43 | 3eqtr3d | |
45 | oveq2 | |
|
46 | 45 | eqeq1d | |
47 | 46 | rspcev | |
48 | 36 44 47 | syl2anc | |
49 | 48 | rexlimdvaa | |
50 | 49 | reximdva | |
51 | 18 50 | orim12d | |
52 | 12 2 | unitcl | |
53 | 52 | 3ad2ant3 | |
54 | 12 3 | ringcl | |
55 | 5 14 53 54 | syl3anc | |
56 | eqid | |
|
57 | 12 2 1 56 3 | isnirred | |
58 | 55 57 | syl | |
59 | 12 2 1 56 3 | isnirred | |
60 | 14 59 | syl | |
61 | 51 58 60 | 3imtr4d | |
62 | 4 61 | mt4d | |