Metamath Proof Explorer


Theorem irredrmul

Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irredn0.i I=IrredR
irredrmul.u U=UnitR
irredrmul.t ·˙=R
Assertion irredrmul RRingXIYUX·˙YI

Proof

Step Hyp Ref Expression
1 irredn0.i I=IrredR
2 irredrmul.u U=UnitR
3 irredrmul.t ·˙=R
4 simp2 RRingXIYUXI
5 simp1 RRingXIYURRing
6 simp3 RRingXIYUYU
7 eqid /rR=/rR
8 2 7 unitdvcl RRingX·˙YUYUX·˙Y/rRYU
9 8 3com23 RRingYUX·˙YUX·˙Y/rRYU
10 9 3expia RRingYUX·˙YUX·˙Y/rRYU
11 5 6 10 syl2anc RRingXIYUX·˙YUX·˙Y/rRYU
12 eqid BaseR=BaseR
13 1 12 irredcl XIXBaseR
14 13 3ad2ant2 RRingXIYUXBaseR
15 12 2 7 3 dvrcan3 RRingXBaseRYUX·˙Y/rRY=X
16 5 14 6 15 syl3anc RRingXIYUX·˙Y/rRY=X
17 16 eleq1d RRingXIYUX·˙Y/rRYUXU
18 11 17 sylibd RRingXIYUX·˙YUXU
19 5 ad2antrr RRingXIYUxBaseRUyBaseRUx·˙y=X·˙YRRing
20 eldifi yBaseRUyBaseR
21 20 ad2antrl RRingXIYUxBaseRUyBaseRUx·˙y=X·˙YyBaseR
22 6 ad2antrr RRingXIYUxBaseRUyBaseRUx·˙y=X·˙YYU
23 12 2 7 dvrcl RRingyBaseRYUy/rRYBaseR
24 19 21 22 23 syl3anc RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yy/rRYBaseR
25 eldifn yBaseRU¬yU
26 25 ad2antrl RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Y¬yU
27 2 3 unitmulcl RRingy/rRYUYUy/rRY·˙YU
28 27 3com23 RRingYUy/rRYUy/rRY·˙YU
29 28 3expia RRingYUy/rRYUy/rRY·˙YU
30 19 22 29 syl2anc RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yy/rRYUy/rRY·˙YU
31 12 2 7 3 dvrcan1 RRingyBaseRYUy/rRY·˙Y=y
32 19 21 22 31 syl3anc RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yy/rRY·˙Y=y
33 32 eleq1d RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yy/rRY·˙YUyU
34 30 33 sylibd RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yy/rRYUyU
35 26 34 mtod RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Y¬y/rRYU
36 24 35 eldifd RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yy/rRYBaseRU
37 simprr RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yx·˙y=X·˙Y
38 37 oveq1d RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yx·˙y/rRY=X·˙Y/rRY
39 eldifi xBaseRUxBaseR
40 39 ad2antlr RRingXIYUxBaseRUyBaseRUx·˙y=X·˙YxBaseR
41 12 2 7 3 dvrass RRingxBaseRyBaseRYUx·˙y/rRY=x·˙y/rRY
42 19 40 21 22 41 syl13anc RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yx·˙y/rRY=x·˙y/rRY
43 16 ad2antrr RRingXIYUxBaseRUyBaseRUx·˙y=X·˙YX·˙Y/rRY=X
44 38 42 43 3eqtr3d RRingXIYUxBaseRUyBaseRUx·˙y=X·˙Yx·˙y/rRY=X
45 oveq2 z=y/rRYx·˙z=x·˙y/rRY
46 45 eqeq1d z=y/rRYx·˙z=Xx·˙y/rRY=X
47 46 rspcev y/rRYBaseRUx·˙y/rRY=XzBaseRUx·˙z=X
48 36 44 47 syl2anc RRingXIYUxBaseRUyBaseRUx·˙y=X·˙YzBaseRUx·˙z=X
49 48 rexlimdvaa RRingXIYUxBaseRUyBaseRUx·˙y=X·˙YzBaseRUx·˙z=X
50 49 reximdva RRingXIYUxBaseRUyBaseRUx·˙y=X·˙YxBaseRUzBaseRUx·˙z=X
51 18 50 orim12d RRingXIYUX·˙YUxBaseRUyBaseRUx·˙y=X·˙YXUxBaseRUzBaseRUx·˙z=X
52 12 2 unitcl YUYBaseR
53 52 3ad2ant3 RRingXIYUYBaseR
54 12 3 ringcl RRingXBaseRYBaseRX·˙YBaseR
55 5 14 53 54 syl3anc RRingXIYUX·˙YBaseR
56 eqid BaseRU=BaseRU
57 12 2 1 56 3 isnirred X·˙YBaseR¬X·˙YIX·˙YUxBaseRUyBaseRUx·˙y=X·˙Y
58 55 57 syl RRingXIYU¬X·˙YIX·˙YUxBaseRUyBaseRUx·˙y=X·˙Y
59 12 2 1 56 3 isnirred XBaseR¬XIXUxBaseRUzBaseRUx·˙z=X
60 14 59 syl RRingXIYU¬XIXUxBaseRUzBaseRUx·˙z=X
61 51 58 60 3imtr4d RRingXIYU¬X·˙YI¬XI
62 4 61 mt4d RRingXIYUX·˙YI