Metamath Proof Explorer


Theorem iscringd

Description: Conditions that determine a commutative ring. (Contributed by Jeff Madsen, 20-Jun-2011) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses iscringd.1 φGAbelOp
iscringd.2 φX=ranG
iscringd.3 φH:X×XX
iscringd.4 φxXyXzXxHyHz=xHyHz
iscringd.5 φxXyXzXxHyGz=xHyGxHz
iscringd.6 φUX
iscringd.7 φyXyHU=y
iscringd.8 φxXyXxHy=yHx
Assertion iscringd φGHCRingOps

Proof

Step Hyp Ref Expression
1 iscringd.1 φGAbelOp
2 iscringd.2 φX=ranG
3 iscringd.3 φH:X×XX
4 iscringd.4 φxXyXzXxHyHz=xHyHz
5 iscringd.5 φxXyXzXxHyGz=xHyGxHz
6 iscringd.6 φUX
7 iscringd.7 φyXyHU=y
8 iscringd.8 φxXyXxHy=yHx
9 id zXyXxXzXyXxX
10 9 3com13 xXyXzXzXyXxX
11 eleq1 w=zwXzX
12 11 3anbi1d w=zwXyXxXzXyXxX
13 12 anbi2d w=zφwXyXxXφzXyXxX
14 oveq2 w=zxGyHw=xGyHz
15 oveq2 w=zxHw=xHz
16 oveq2 w=zyHw=yHz
17 15 16 oveq12d w=zxHwGyHw=xHzGyHz
18 14 17 eqeq12d w=zxGyHw=xHwGyHwxGyHz=xHzGyHz
19 13 18 imbi12d w=zφwXyXxXxGyHw=xHwGyHwφzXyXxXxGyHz=xHzGyHz
20 eleq1 z=xzXxX
21 20 3anbi3d z=xwXyXzXwXyXxX
22 21 anbi2d z=xφwXyXzXφwXyXxX
23 oveq1 z=xzGy=xGy
24 23 oveq1d z=xzGyHw=xGyHw
25 oveq1 z=xzHw=xHw
26 25 oveq1d z=xzHwGyHw=xHwGyHw
27 24 26 eqeq12d z=xzGyHw=zHwGyHwxGyHw=xHwGyHw
28 22 27 imbi12d z=xφwXyXzXzGyHw=zHwGyHwφwXyXxXxGyHw=xHwGyHw
29 eleq1 x=wxXwX
30 29 3anbi1d x=wxXyXzXwXyXzX
31 30 anbi2d x=wφxXyXzXφwXyXzX
32 oveq2 x=wzGyHx=zGyHw
33 oveq2 x=wzHx=zHw
34 oveq2 x=wyHx=yHw
35 33 34 oveq12d x=wzHxGyHx=zHwGyHw
36 32 35 eqeq12d x=wzGyHx=zHxGyHxzGyHw=zHwGyHw
37 31 36 imbi12d x=wφxXyXzXzGyHx=zHxGyHxφwXyXzXzGyHw=zHwGyHw
38 1 adantr φxXyXzXGAbelOp
39 simpr3 φxXyXzXzX
40 2 adantr φxXyXzXX=ranG
41 39 40 eleqtrd φxXyXzXzranG
42 simpr2 φxXyXzXyX
43 42 40 eleqtrd φxXyXzXyranG
44 eqid ranG=ranG
45 44 ablocom GAbelOpzranGyranGzGy=yGz
46 38 41 43 45 syl3anc φxXyXzXzGy=yGz
47 46 oveq1d φxXyXzXzGyHx=yGzHx
48 simpr1 φxXyXzXxX
49 ablogrpo GAbelOpGGrpOp
50 38 49 syl φxXyXzXGGrpOp
51 44 grpocl GGrpOpyranGzranGyGzranG
52 50 43 41 51 syl3anc φxXyXzXyGzranG
53 52 40 eleqtrrd φxXyXzXyGzX
54 48 53 jca φxXyXzXxXyGzX
55 ovex yGzV
56 eleq1 w=yGzwXyGzX
57 56 anbi2d w=yGzxXwXxXyGzX
58 57 anbi2d w=yGzφxXwXφxXyGzX
59 oveq2 w=yGzxHw=xHyGz
60 oveq1 w=yGzwHx=yGzHx
61 59 60 eqeq12d w=yGzxHw=wHxxHyGz=yGzHx
62 58 61 imbi12d w=yGzφxXwXxHw=wHxφxXyGzXxHyGz=yGzHx
63 eleq1 y=wyXwX
64 63 anbi2d y=wxXyXxXwX
65 64 anbi2d y=wφxXyXφxXwX
66 oveq2 y=wxHy=xHw
67 oveq1 y=wyHx=wHx
68 66 67 eqeq12d y=wxHy=yHxxHw=wHx
69 65 68 imbi12d y=wφxXyXxHy=yHxφxXwXxHw=wHx
70 69 8 chvarvv φxXwXxHw=wHx
71 55 62 70 vtocl φxXyGzXxHyGz=yGzHx
72 54 71 syldan φxXyXzXxHyGz=yGzHx
73 8 3adantr3 φxXyXzXxHy=yHx
74 eleq1 y=zyXzX
75 74 anbi2d y=zxXyXxXzX
76 75 anbi2d y=zφxXyXφxXzX
77 oveq2 y=zxHy=xHz
78 oveq1 y=zyHx=zHx
79 77 78 eqeq12d y=zxHy=yHxxHz=zHx
80 76 79 imbi12d y=zφxXyXxHy=yHxφxXzXxHz=zHx
81 80 8 chvarvv φxXzXxHz=zHx
82 81 3adantr2 φxXyXzXxHz=zHx
83 73 82 oveq12d φxXyXzXxHyGxHz=yHxGzHx
84 3 adantr φxXyXzXH:X×XX
85 84 42 48 fovcdmd φxXyXzXyHxX
86 85 40 eleqtrd φxXyXzXyHxranG
87 84 39 48 fovcdmd φxXyXzXzHxX
88 87 40 eleqtrd φxXyXzXzHxranG
89 44 ablocom GAbelOpyHxranGzHxranGyHxGzHx=zHxGyHx
90 38 86 88 89 syl3anc φxXyXzXyHxGzHx=zHxGyHx
91 5 83 90 3eqtrd φxXyXzXxHyGz=zHxGyHx
92 47 72 91 3eqtr2d φxXyXzXzGyHx=zHxGyHx
93 37 92 chvarvv φwXyXzXzGyHw=zHwGyHw
94 28 93 chvarvv φwXyXxXxGyHw=xHwGyHw
95 19 94 chvarvv φzXyXxXxGyHz=xHzGyHz
96 10 95 sylan2 φxXyXzXxGyHz=xHzGyHz
97 6 adantr φyXUX
98 oveq1 x=UxHy=UHy
99 oveq2 x=UyHx=yHU
100 98 99 eqeq12d x=UxHy=yHxUHy=yHU
101 100 imbi2d x=UφyXxHy=yHxφyXUHy=yHU
102 8 an12s xXφyXxHy=yHx
103 102 ex xXφyXxHy=yHx
104 101 103 vtoclga UXφyXUHy=yHU
105 97 104 mpcom φyXUHy=yHU
106 105 7 eqtrd φyXUHy=y
107 1 2 3 4 5 96 6 106 7 isrngod φGHRingOps
108 2 eleq2d φxXxranG
109 2 eleq2d φyXyranG
110 108 109 anbi12d φxXyXxranGyranG
111 110 biimpar φxranGyranGxXyX
112 111 8 syldan φxranGyranGxHy=yHx
113 112 ralrimivva φxranGyranGxHy=yHx
114 rnexg GAbelOpranGV
115 1 114 syl φranGV
116 2 115 eqeltrd φXV
117 116 116 xpexd φX×XV
118 3 117 fexd φHV
119 iscom2 GAbelOpHVGHCom2xranGyranGxHy=yHx
120 1 118 119 syl2anc φGHCom2xranGyranGxHy=yHx
121 113 120 mpbird φGHCom2
122 iscrngo GHCRingOpsGHRingOpsGHCom2
123 107 121 122 sylanbrc φGHCRingOps