Metamath Proof Explorer


Theorem islly2

Description: An alternative expression for J e. Locally A when A passes to open subspaces: A space is locally A if every point is contained in an open neighborhood with property A . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Hypotheses restlly.1 φjAxjj𝑡xA
islly2.2 X=J
Assertion islly2 φJLocally A JTopyXuJyuJ𝑡uA

Proof

Step Hyp Ref Expression
1 restlly.1 φjAxjj𝑡xA
2 islly2.2 X=J
3 llytop JLocally A JTop
4 3 adantl φJLocally A JTop
5 simplr φJLocally A yX JLocally A
6 4 adantr φJLocally A yX JTop
7 2 topopn JTopXJ
8 6 7 syl φJLocally A yX XJ
9 simpr φJLocally A yX yX
10 llyi JLocally A XJ yX uJuXyuJ𝑡uA
11 5 8 9 10 syl3anc φJLocally A yX uJuXyuJ𝑡uA
12 3simpc uXyuJ𝑡uAyuJ𝑡uA
13 12 reximi uJuXyuJ𝑡uAuJyuJ𝑡uA
14 11 13 syl φJLocally A yX uJyuJ𝑡uA
15 14 ralrimiva φJLocally A yXuJyuJ𝑡uA
16 4 15 jca φJLocally A JTopyXuJyuJ𝑡uA
17 simprl φJTopyXuJyuJ𝑡uAJTop
18 elssuni zJzJ
19 18 2 sseqtrrdi zJzX
20 19 adantl φJTopzJzX
21 ssralv zXyXuJyuJ𝑡uAyzuJyuJ𝑡uA
22 20 21 syl φJTopzJyXuJyuJ𝑡uAyzuJyuJ𝑡uA
23 simpllr φJTopzJyzuJyuJ𝑡uAJTop
24 simplrl φJTopzJyzuJyuJ𝑡uAzJ
25 simprl φJTopzJyzuJyuJ𝑡uAuJ
26 inopn JTopzJuJzuJ
27 23 24 25 26 syl3anc φJTopzJyzuJyuJ𝑡uAzuJ
28 vex zV
29 inss1 zuz
30 28 29 elpwi2 zu𝒫z
31 30 a1i φJTopzJyzuJyuJ𝑡uAzu𝒫z
32 27 31 elind φJTopzJyzuJyuJ𝑡uAzuJ𝒫z
33 simplrr φJTopzJyzuJyuJ𝑡uAyz
34 simprrl φJTopzJyzuJyuJ𝑡uAyu
35 33 34 elind φJTopzJyzuJyuJ𝑡uAyzu
36 inss2 zuu
37 36 a1i φJTopzJyzuJyuJ𝑡uAzuu
38 restabs JTopzuuuJJ𝑡u𝑡zu=J𝑡zu
39 23 37 25 38 syl3anc φJTopzJyzuJyuJ𝑡uAJ𝑡u𝑡zu=J𝑡zu
40 oveq2 x=zuJ𝑡u𝑡x=J𝑡u𝑡zu
41 40 eleq1d x=zuJ𝑡u𝑡xAJ𝑡u𝑡zuA
42 oveq1 j=J𝑡uj𝑡x=J𝑡u𝑡x
43 42 eleq1d j=J𝑡uj𝑡xAJ𝑡u𝑡xA
44 43 raleqbi1dv j=J𝑡uxjj𝑡xAxJ𝑡uJ𝑡u𝑡xA
45 1 ralrimivva φjAxjj𝑡xA
46 45 ad3antrrr φJTopzJyzuJyuJ𝑡uAjAxjj𝑡xA
47 simprrr φJTopzJyzuJyuJ𝑡uAJ𝑡uA
48 44 46 47 rspcdva φJTopzJyzuJyuJ𝑡uAxJ𝑡uJ𝑡u𝑡xA
49 elrestr JTopuJzJzuJ𝑡u
50 23 25 24 49 syl3anc φJTopzJyzuJyuJ𝑡uAzuJ𝑡u
51 41 48 50 rspcdva φJTopzJyzuJyuJ𝑡uAJ𝑡u𝑡zuA
52 39 51 eqeltrrd φJTopzJyzuJyuJ𝑡uAJ𝑡zuA
53 eleq2 v=zuyvyzu
54 oveq2 v=zuJ𝑡v=J𝑡zu
55 54 eleq1d v=zuJ𝑡vAJ𝑡zuA
56 53 55 anbi12d v=zuyvJ𝑡vAyzuJ𝑡zuA
57 56 rspcev zuJ𝒫zyzuJ𝑡zuAvJ𝒫zyvJ𝑡vA
58 32 35 52 57 syl12anc φJTopzJyzuJyuJ𝑡uAvJ𝒫zyvJ𝑡vA
59 58 rexlimdvaa φJTopzJyzuJyuJ𝑡uAvJ𝒫zyvJ𝑡vA
60 59 anassrs φJTopzJyzuJyuJ𝑡uAvJ𝒫zyvJ𝑡vA
61 60 ralimdva φJTopzJyzuJyuJ𝑡uAyzvJ𝒫zyvJ𝑡vA
62 22 61 syld φJTopzJyXuJyuJ𝑡uAyzvJ𝒫zyvJ𝑡vA
63 62 ralrimdva φJTopyXuJyuJ𝑡uAzJyzvJ𝒫zyvJ𝑡vA
64 63 impr φJTopyXuJyuJ𝑡uAzJyzvJ𝒫zyvJ𝑡vA
65 islly JLocally A JTopzJyzvJ𝒫zyvJ𝑡vA
66 17 64 65 sylanbrc φJTopyXuJyuJ𝑡uAJLocally A
67 16 66 impbida φJLocally A JTopyXuJyuJ𝑡uA