Metamath Proof Explorer


Theorem ismrcd2

Description: Second half of ismrcd1 . (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses ismrcd.b φBV
ismrcd.f φF:𝒫B𝒫B
ismrcd.e φxBxFx
ismrcd.m φxByxFyFx
ismrcd.i φxBFFx=Fx
Assertion ismrcd2 φF=mrClsdomFI

Proof

Step Hyp Ref Expression
1 ismrcd.b φBV
2 ismrcd.f φF:𝒫B𝒫B
3 ismrcd.e φxBxFx
4 ismrcd.m φxByxFyFx
5 ismrcd.i φxBFFx=Fx
6 2 ffnd φFFn𝒫B
7 1 2 3 4 5 ismrcd1 φdomFIMooreB
8 eqid mrClsdomFI=mrClsdomFI
9 8 mrcf domFIMooreBmrClsdomFI:𝒫BdomFI
10 ffn mrClsdomFI:𝒫BdomFImrClsdomFIFn𝒫B
11 7 9 10 3syl φmrClsdomFIFn𝒫B
12 7 8 mrcssvd φmrClsdomFIzB
13 12 adantr φz𝒫BmrClsdomFIzB
14 elpwi z𝒫BzB
15 8 mrcssid domFIMooreBzBzmrClsdomFIz
16 7 14 15 syl2an φz𝒫BzmrClsdomFIz
17 4 3expib φxByxFyFx
18 17 alrimivv φyxxByxFyFx
19 vex zV
20 fvex mrClsdomFIzV
21 sseq1 x=mrClsdomFIzxBmrClsdomFIzB
22 21 adantl y=zx=mrClsdomFIzxBmrClsdomFIzB
23 sseq12 y=zx=mrClsdomFIzyxzmrClsdomFIz
24 22 23 anbi12d y=zx=mrClsdomFIzxByxmrClsdomFIzBzmrClsdomFIz
25 fveq2 y=zFy=Fz
26 fveq2 x=mrClsdomFIzFx=FmrClsdomFIz
27 sseq12 Fy=FzFx=FmrClsdomFIzFyFxFzFmrClsdomFIz
28 25 26 27 syl2an y=zx=mrClsdomFIzFyFxFzFmrClsdomFIz
29 24 28 imbi12d y=zx=mrClsdomFIzxByxFyFxmrClsdomFIzBzmrClsdomFIzFzFmrClsdomFIz
30 29 spc2gv zVmrClsdomFIzVyxxByxFyFxmrClsdomFIzBzmrClsdomFIzFzFmrClsdomFIz
31 19 20 30 mp2an yxxByxFyFxmrClsdomFIzBzmrClsdomFIzFzFmrClsdomFIz
32 18 31 syl φmrClsdomFIzBzmrClsdomFIzFzFmrClsdomFIz
33 32 adantr φz𝒫BmrClsdomFIzBzmrClsdomFIzFzFmrClsdomFIz
34 13 16 33 mp2and φz𝒫BFzFmrClsdomFIz
35 8 mrccl domFIMooreBzBmrClsdomFIzdomFI
36 7 14 35 syl2an φz𝒫BmrClsdomFIzdomFI
37 6 adantr φz𝒫BFFn𝒫B
38 20 elpw mrClsdomFIz𝒫BmrClsdomFIzB
39 12 38 sylibr φmrClsdomFIz𝒫B
40 39 adantr φz𝒫BmrClsdomFIz𝒫B
41 fnelfp FFn𝒫BmrClsdomFIz𝒫BmrClsdomFIzdomFIFmrClsdomFIz=mrClsdomFIz
42 37 40 41 syl2anc φz𝒫BmrClsdomFIzdomFIFmrClsdomFIz=mrClsdomFIz
43 36 42 mpbid φz𝒫BFmrClsdomFIz=mrClsdomFIz
44 34 43 sseqtrd φz𝒫BFzmrClsdomFIz
45 7 adantr φz𝒫BdomFIMooreB
46 sseq1 x=zxBzB
47 46 anbi2d x=zφxBφzB
48 id x=zx=z
49 fveq2 x=zFx=Fz
50 48 49 sseq12d x=zxFxzFz
51 47 50 imbi12d x=zφxBxFxφzBzFz
52 51 3 chvarvv φzBzFz
53 14 52 sylan2 φz𝒫BzFz
54 2fveq3 x=zFFx=FFz
55 54 49 eqeq12d x=zFFx=FxFFz=Fz
56 47 55 imbi12d x=zφxBFFx=FxφzBFFz=Fz
57 56 5 chvarvv φzBFFz=Fz
58 14 57 sylan2 φz𝒫BFFz=Fz
59 2 ffvelcdmda φz𝒫BFz𝒫B
60 fnelfp FFn𝒫BFz𝒫BFzdomFIFFz=Fz
61 37 59 60 syl2anc φz𝒫BFzdomFIFFz=Fz
62 58 61 mpbird φz𝒫BFzdomFI
63 8 mrcsscl domFIMooreBzFzFzdomFImrClsdomFIzFz
64 45 53 62 63 syl3anc φz𝒫BmrClsdomFIzFz
65 44 64 eqssd φz𝒫BFz=mrClsdomFIz
66 6 11 65 eqfnfvd φF=mrClsdomFI