Description: Lemma for ismtybnd . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 19-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ismtybndlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isismty | |
|
2 | 1 | biimp3a | |
3 | 2 | simpld | |
4 | f1ocnv | |
|
5 | f1of | |
|
6 | 3 4 5 | 3syl | |
7 | 6 | ffvelcdmda | |
8 | oveq1 | |
|
9 | 8 | eqeq2d | |
10 | 9 | rexbidv | |
11 | 10 | rspcv | |
12 | 7 11 | syl | |
13 | imaeq2 | |
|
14 | f1ofo | |
|
15 | foima | |
|
16 | 3 14 15 | 3syl | |
17 | 16 | adantr | |
18 | rpxr | |
|
19 | 18 | adantl | |
20 | 7 19 | anim12dan | |
21 | ismtyima | |
|
22 | 20 21 | syldan | |
23 | simpl | |
|
24 | f1ocnvfv2 | |
|
25 | 3 23 24 | syl2an | |
26 | 25 | oveq1d | |
27 | 22 26 | eqtrd | |
28 | 17 27 | eqeq12d | |
29 | 13 28 | imbitrid | |
30 | 29 | anassrs | |
31 | 30 | reximdva | |
32 | 12 31 | syld | |
33 | 32 | ralrimdva | |
34 | simp2 | |
|
35 | 33 34 | jctild | |
36 | 35 | 3expib | |
37 | 36 | com12 | |
38 | 37 | impd | |
39 | isbndx | |
|
40 | isbndx | |
|
41 | 38 39 40 | 3imtr4g | |