Metamath Proof Explorer


Theorem ismtybndlem

Description: Lemma for ismtybnd . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 19-Jan-2014)

Ref Expression
Assertion ismtybndlem N∞MetYFMIsmtyNMBndXNBndY

Proof

Step Hyp Ref Expression
1 isismty M∞MetXN∞MetYFMIsmtyNF:X1-1 ontoYzXwXzMw=FzNFw
2 1 biimp3a M∞MetXN∞MetYFMIsmtyNF:X1-1 ontoYzXwXzMw=FzNFw
3 2 simpld M∞MetXN∞MetYFMIsmtyNF:X1-1 ontoY
4 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
5 f1of F-1:Y1-1 ontoXF-1:YX
6 3 4 5 3syl M∞MetXN∞MetYFMIsmtyNF-1:YX
7 6 ffvelcdmda M∞MetXN∞MetYFMIsmtyNyYF-1yX
8 oveq1 x=F-1yxballMr=F-1yballMr
9 8 eqeq2d x=F-1yX=xballMrX=F-1yballMr
10 9 rexbidv x=F-1yr+X=xballMrr+X=F-1yballMr
11 10 rspcv F-1yXxXr+X=xballMrr+X=F-1yballMr
12 7 11 syl M∞MetXN∞MetYFMIsmtyNyYxXr+X=xballMrr+X=F-1yballMr
13 imaeq2 X=F-1yballMrFX=FF-1yballMr
14 f1ofo F:X1-1 ontoYF:XontoY
15 foima F:XontoYFX=Y
16 3 14 15 3syl M∞MetXN∞MetYFMIsmtyNFX=Y
17 16 adantr M∞MetXN∞MetYFMIsmtyNyYr+FX=Y
18 rpxr r+r*
19 18 adantl M∞MetXN∞MetYFMIsmtyNr+r*
20 7 19 anim12dan M∞MetXN∞MetYFMIsmtyNyYr+F-1yXr*
21 ismtyima M∞MetXN∞MetYFMIsmtyNF-1yXr*FF-1yballMr=FF-1yballNr
22 20 21 syldan M∞MetXN∞MetYFMIsmtyNyYr+FF-1yballMr=FF-1yballNr
23 simpl yYr+yY
24 f1ocnvfv2 F:X1-1 ontoYyYFF-1y=y
25 3 23 24 syl2an M∞MetXN∞MetYFMIsmtyNyYr+FF-1y=y
26 25 oveq1d M∞MetXN∞MetYFMIsmtyNyYr+FF-1yballNr=yballNr
27 22 26 eqtrd M∞MetXN∞MetYFMIsmtyNyYr+FF-1yballMr=yballNr
28 17 27 eqeq12d M∞MetXN∞MetYFMIsmtyNyYr+FX=FF-1yballMrY=yballNr
29 13 28 imbitrid M∞MetXN∞MetYFMIsmtyNyYr+X=F-1yballMrY=yballNr
30 29 anassrs M∞MetXN∞MetYFMIsmtyNyYr+X=F-1yballMrY=yballNr
31 30 reximdva M∞MetXN∞MetYFMIsmtyNyYr+X=F-1yballMrr+Y=yballNr
32 12 31 syld M∞MetXN∞MetYFMIsmtyNyYxXr+X=xballMrr+Y=yballNr
33 32 ralrimdva M∞MetXN∞MetYFMIsmtyNxXr+X=xballMryYr+Y=yballNr
34 simp2 M∞MetXN∞MetYFMIsmtyNN∞MetY
35 33 34 jctild M∞MetXN∞MetYFMIsmtyNxXr+X=xballMrN∞MetYyYr+Y=yballNr
36 35 3expib M∞MetXN∞MetYFMIsmtyNxXr+X=xballMrN∞MetYyYr+Y=yballNr
37 36 com12 N∞MetYFMIsmtyNM∞MetXxXr+X=xballMrN∞MetYyYr+Y=yballNr
38 37 impd N∞MetYFMIsmtyNM∞MetXxXr+X=xballMrN∞MetYyYr+Y=yballNr
39 isbndx MBndXM∞MetXxXr+X=xballMr
40 isbndx NBndYN∞MetYyYr+Y=yballNr
41 38 39 40 3imtr4g N∞MetYFMIsmtyNMBndXNBndY