Metamath Proof Explorer


Theorem isnvlem

Description: Lemma for isnv . (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses isnvlem.1 X=ranG
isnvlem.2 Z=GIdG
Assertion isnvlem GVSVNVGSNNrmCVecGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny

Proof

Step Hyp Ref Expression
1 isnvlem.1 X=ranG
2 isnvlem.2 Z=GIdG
3 df-nv NrmCVec=gsn|gsCVecOLDn:rangxrangnx=0x=GIdgynysx=ynxyrangnxgynx+ny
4 3 eleq2i GSNNrmCVecGSNgsn|gsCVecOLDn:rangxrangnx=0x=GIdgynysx=ynxyrangnxgynx+ny
5 opeq1 g=Ggs=Gs
6 5 eleq1d g=GgsCVecOLDGsCVecOLD
7 rneq g=Grang=ranG
8 7 1 eqtr4di g=Grang=X
9 8 feq2d g=Gn:rangn:X
10 fveq2 g=GGIdg=GIdG
11 10 2 eqtr4di g=GGIdg=Z
12 11 eqeq2d g=Gx=GIdgx=Z
13 12 imbi2d g=Gnx=0x=GIdgnx=0x=Z
14 oveq g=Gxgy=xGy
15 14 fveq2d g=Gnxgy=nxGy
16 15 breq1d g=Gnxgynx+nynxGynx+ny
17 8 16 raleqbidv g=Gyrangnxgynx+nyyXnxGynx+ny
18 13 17 3anbi13d g=Gnx=0x=GIdgynysx=ynxyrangnxgynx+nynx=0x=Zynysx=ynxyXnxGynx+ny
19 8 18 raleqbidv g=Gxrangnx=0x=GIdgynysx=ynxyrangnxgynx+nyxXnx=0x=Zynysx=ynxyXnxGynx+ny
20 6 9 19 3anbi123d g=GgsCVecOLDn:rangxrangnx=0x=GIdgynysx=ynxyrangnxgynx+nyGsCVecOLDn:XxXnx=0x=Zynysx=ynxyXnxGynx+ny
21 opeq2 s=SGs=GS
22 21 eleq1d s=SGsCVecOLDGSCVecOLD
23 oveq s=Sysx=ySx
24 23 fveqeq2d s=Snysx=ynxnySx=ynx
25 24 ralbidv s=Synysx=ynxynySx=ynx
26 25 3anbi2d s=Snx=0x=Zynysx=ynxyXnxGynx+nynx=0x=ZynySx=ynxyXnxGynx+ny
27 26 ralbidv s=SxXnx=0x=Zynysx=ynxyXnxGynx+nyxXnx=0x=ZynySx=ynxyXnxGynx+ny
28 22 27 3anbi13d s=SGsCVecOLDn:XxXnx=0x=Zynysx=ynxyXnxGynx+nyGSCVecOLDn:XxXnx=0x=ZynySx=ynxyXnxGynx+ny
29 feq1 n=Nn:XN:X
30 fveq1 n=Nnx=Nx
31 30 eqeq1d n=Nnx=0Nx=0
32 31 imbi1d n=Nnx=0x=ZNx=0x=Z
33 fveq1 n=NnySx=NySx
34 30 oveq2d n=Nynx=yNx
35 33 34 eqeq12d n=NnySx=ynxNySx=yNx
36 35 ralbidv n=NynySx=ynxyNySx=yNx
37 fveq1 n=NnxGy=NxGy
38 fveq1 n=Nny=Ny
39 30 38 oveq12d n=Nnx+ny=Nx+Ny
40 37 39 breq12d n=NnxGynx+nyNxGyNx+Ny
41 40 ralbidv n=NyXnxGynx+nyyXNxGyNx+Ny
42 32 36 41 3anbi123d n=Nnx=0x=ZynySx=ynxyXnxGynx+nyNx=0x=ZyNySx=yNxyXNxGyNx+Ny
43 42 ralbidv n=NxXnx=0x=ZynySx=ynxyXnxGynx+nyxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny
44 29 43 3anbi23d n=NGSCVecOLDn:XxXnx=0x=ZynySx=ynxyXnxGynx+nyGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny
45 20 28 44 eloprabg GVSVNVGSNgsn|gsCVecOLDn:rangxrangnx=0x=GIdgynysx=ynxyrangnxgynx+nyGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny
46 4 45 bitrid GVSVNVGSNNrmCVecGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny