Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Isomorphic graphs
isomuspgrlem1
Next ⟩
isomuspgrlem2a
Metamath Proof Explorer
Ascii
Unicode
Theorem
isomuspgrlem1
Description:
Lemma 1 for
isomuspgr
.
(Contributed by
AV
, 29-Nov-2022)
Ref
Expression
Hypotheses
isomushgr.v
⊢
V
=
Vtx
A
isomushgr.w
⊢
W
=
Vtx
B
isomushgr.e
⊢
E
=
Edg
A
isomushgr.k
⊢
K
=
Edg
B
Assertion
isomuspgrlem1
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
→
f
a
f
b
∈
K
→
a
b
∈
E
Proof
Step
Hyp
Ref
Expression
1
isomushgr.v
⊢
V
=
Vtx
A
2
isomushgr.w
⊢
W
=
Vtx
B
3
isomushgr.e
⊢
E
=
Edg
A
4
isomushgr.k
⊢
K
=
Edg
B
5
simpl
⊢
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
g
:
E
⟶
1-1 onto
K
6
5
ad2antlr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
→
g
:
E
⟶
1-1 onto
K
7
f1ocnvdm
⊢
g
:
E
⟶
1-1 onto
K
∧
f
a
f
b
∈
K
→
g
-1
f
a
f
b
∈
E
8
6
7
sylan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
→
g
-1
f
a
f
b
∈
E
9
uspgrupgr
⊢
A
∈
USHGraph
→
A
∈
UPGraph
10
9
adantr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
→
A
∈
UPGraph
11
10
ad4antr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
→
A
∈
UPGraph
12
1
3
upgredg
⊢
A
∈
UPGraph
∧
g
-1
f
a
f
b
∈
E
→
∃
x
∈
V
∃
y
∈
V
g
-1
f
a
f
b
=
x
y
13
11
12
sylan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
→
∃
x
∈
V
∃
y
∈
V
g
-1
f
a
f
b
=
x
y
14
eleq1
⊢
g
-1
f
a
f
b
=
x
y
→
g
-1
f
a
f
b
∈
E
↔
x
y
∈
E
15
14
biimpd
⊢
g
-1
f
a
f
b
=
x
y
→
g
-1
f
a
f
b
∈
E
→
x
y
∈
E
16
15
com12
⊢
g
-1
f
a
f
b
∈
E
→
g
-1
f
a
f
b
=
x
y
→
x
y
∈
E
17
16
ad2antlr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
→
g
-1
f
a
f
b
=
x
y
→
x
y
∈
E
18
17
imp
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
g
-1
f
a
f
b
=
x
y
→
x
y
∈
E
19
5
ad6antlr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
g
:
E
⟶
1-1 onto
K
20
simpr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
x
y
∈
E
21
simpr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
→
f
a
f
b
∈
K
22
21
ad5ant12
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
f
a
f
b
∈
K
23
19
20
22
3jca
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
g
:
E
⟶
1-1 onto
K
∧
x
y
∈
E
∧
f
a
f
b
∈
K
24
f1ocnvfvb
⊢
g
:
E
⟶
1-1 onto
K
∧
x
y
∈
E
∧
f
a
f
b
∈
K
→
g
x
y
=
f
a
f
b
↔
g
-1
f
a
f
b
=
x
y
25
23
24
syl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
g
x
y
=
f
a
f
b
↔
g
-1
f
a
f
b
=
x
y
26
imaeq2
⊢
e
=
x
y
→
f
e
=
f
x
y
27
fveq2
⊢
e
=
x
y
→
g
e
=
g
x
y
28
26
27
eqeq12d
⊢
e
=
x
y
→
f
e
=
g
e
↔
f
x
y
=
g
x
y
29
28
rspccv
⊢
∀
e
∈
E
f
e
=
g
e
→
x
y
∈
E
→
f
x
y
=
g
x
y
30
29
adantl
⊢
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
x
y
∈
E
→
f
x
y
=
g
x
y
31
30
adantl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
x
y
∈
E
→
f
x
y
=
g
x
y
32
31
ad4antr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
→
x
y
∈
E
→
f
x
y
=
g
x
y
33
32
imp
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
f
x
y
=
g
x
y
34
eqeq1
⊢
g
x
y
=
f
x
y
→
g
x
y
=
f
a
f
b
↔
f
x
y
=
f
a
f
b
35
34
eqcoms
⊢
f
x
y
=
g
x
y
→
g
x
y
=
f
a
f
b
↔
f
x
y
=
f
a
f
b
36
35
adantl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
∧
f
x
y
=
g
x
y
→
g
x
y
=
f
a
f
b
↔
f
x
y
=
f
a
f
b
37
f1ofn
⊢
f
:
V
⟶
1-1 onto
W
→
f
Fn
V
38
37
ad6antlr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
→
f
Fn
V
39
simpl
⊢
x
∈
V
∧
y
∈
V
→
x
∈
V
40
39
adantl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
→
x
∈
V
41
simpr
⊢
x
∈
V
∧
y
∈
V
→
y
∈
V
42
41
adantl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
→
y
∈
V
43
38
40
42
3jca
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
→
f
Fn
V
∧
x
∈
V
∧
y
∈
V
44
43
adantr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
f
Fn
V
∧
x
∈
V
∧
y
∈
V
45
fnimapr
⊢
f
Fn
V
∧
x
∈
V
∧
y
∈
V
→
f
x
y
=
f
x
f
y
46
44
45
syl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
f
x
y
=
f
x
f
y
47
46
eqeq1d
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
f
x
y
=
f
a
f
b
↔
f
x
f
y
=
f
a
f
b
48
fvex
⊢
f
x
∈
V
49
fvex
⊢
f
y
∈
V
50
fvex
⊢
f
a
∈
V
51
fvex
⊢
f
b
∈
V
52
48
49
50
51
preq12b
⊢
f
x
f
y
=
f
a
f
b
↔
f
x
=
f
a
∧
f
y
=
f
b
∨
f
x
=
f
b
∧
f
y
=
f
a
53
f1of1
⊢
f
:
V
⟶
1-1 onto
W
→
f
:
V
⟶
1-1
W
54
simpl
⊢
a
∈
V
∧
b
∈
V
→
a
∈
V
55
54
39
anim12ci
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
→
x
∈
V
∧
a
∈
V
56
f1veqaeq
⊢
f
:
V
⟶
1-1
W
∧
x
∈
V
∧
a
∈
V
→
f
x
=
f
a
→
x
=
a
57
53
55
56
syl2anr
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
f
x
=
f
a
→
x
=
a
58
simpr
⊢
a
∈
V
∧
b
∈
V
→
b
∈
V
59
58
41
anim12ci
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
→
y
∈
V
∧
b
∈
V
60
f1veqaeq
⊢
f
:
V
⟶
1-1
W
∧
y
∈
V
∧
b
∈
V
→
f
y
=
f
b
→
y
=
b
61
53
59
60
syl2anr
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
f
y
=
f
b
→
y
=
b
62
57
61
anim12d
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
f
x
=
f
a
∧
f
y
=
f
b
→
x
=
a
∧
y
=
b
63
62
impcom
⊢
f
x
=
f
a
∧
f
y
=
f
b
∧
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
x
=
a
∧
y
=
b
64
63
orcd
⊢
f
x
=
f
a
∧
f
y
=
f
b
∧
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
x
=
a
∧
y
=
b
∨
x
=
b
∧
y
=
a
65
64
ex
⊢
f
x
=
f
a
∧
f
y
=
f
b
→
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
x
=
a
∧
y
=
b
∨
x
=
b
∧
y
=
a
66
58
39
anim12ci
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
→
x
∈
V
∧
b
∈
V
67
f1veqaeq
⊢
f
:
V
⟶
1-1
W
∧
x
∈
V
∧
b
∈
V
→
f
x
=
f
b
→
x
=
b
68
53
66
67
syl2anr
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
f
x
=
f
b
→
x
=
b
69
54
41
anim12ci
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
→
y
∈
V
∧
a
∈
V
70
f1veqaeq
⊢
f
:
V
⟶
1-1
W
∧
y
∈
V
∧
a
∈
V
→
f
y
=
f
a
→
y
=
a
71
53
69
70
syl2anr
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
f
y
=
f
a
→
y
=
a
72
68
71
anim12d
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
f
x
=
f
b
∧
f
y
=
f
a
→
x
=
b
∧
y
=
a
73
72
impcom
⊢
f
x
=
f
b
∧
f
y
=
f
a
∧
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
x
=
b
∧
y
=
a
74
73
olcd
⊢
f
x
=
f
b
∧
f
y
=
f
a
∧
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
x
=
a
∧
y
=
b
∨
x
=
b
∧
y
=
a
75
74
ex
⊢
f
x
=
f
b
∧
f
y
=
f
a
→
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
x
=
a
∧
y
=
b
∨
x
=
b
∧
y
=
a
76
65
75
jaoi
⊢
f
x
=
f
a
∧
f
y
=
f
b
∨
f
x
=
f
b
∧
f
y
=
f
a
→
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
x
=
a
∧
y
=
b
∨
x
=
b
∧
y
=
a
77
vex
⊢
x
∈
V
78
vex
⊢
y
∈
V
79
vex
⊢
a
∈
V
80
vex
⊢
b
∈
V
81
77
78
79
80
preq12b
⊢
x
y
=
a
b
↔
x
=
a
∧
y
=
b
∨
x
=
b
∧
y
=
a
82
76
81
syl6ibr
⊢
f
x
=
f
a
∧
f
y
=
f
b
∨
f
x
=
f
b
∧
f
y
=
f
a
→
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
x
y
=
a
b
83
52
82
sylbi
⊢
f
x
f
y
=
f
a
f
b
→
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
x
y
=
a
b
84
83
com12
⊢
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
∧
f
:
V
⟶
1-1 onto
W
→
f
x
f
y
=
f
a
f
b
→
x
y
=
a
b
85
84
expcom
⊢
f
:
V
⟶
1-1 onto
W
→
a
∈
V
∧
b
∈
V
∧
x
∈
V
∧
y
∈
V
→
f
x
f
y
=
f
a
f
b
→
x
y
=
a
b
86
85
expd
⊢
f
:
V
⟶
1-1 onto
W
→
a
∈
V
∧
b
∈
V
→
x
∈
V
∧
y
∈
V
→
f
x
f
y
=
f
a
f
b
→
x
y
=
a
b
87
86
ad2antlr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
a
∈
V
∧
b
∈
V
→
x
∈
V
∧
y
∈
V
→
f
x
f
y
=
f
a
f
b
→
x
y
=
a
b
88
87
imp
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
→
x
∈
V
∧
y
∈
V
→
f
x
f
y
=
f
a
f
b
→
x
y
=
a
b
89
88
adantr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
→
x
∈
V
∧
y
∈
V
→
f
x
f
y
=
f
a
f
b
→
x
y
=
a
b
90
89
adantr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
→
x
∈
V
∧
y
∈
V
→
f
x
f
y
=
f
a
f
b
→
x
y
=
a
b
91
90
imp31
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
f
x
f
y
=
f
a
f
b
→
x
y
=
a
b
92
91
eleq1d
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
f
x
f
y
=
f
a
f
b
→
x
y
∈
E
↔
a
b
∈
E
93
92
biimpd
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
f
x
f
y
=
f
a
f
b
→
x
y
∈
E
→
a
b
∈
E
94
93
impancom
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
f
x
f
y
=
f
a
f
b
→
a
b
∈
E
95
47
94
sylbid
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
f
x
y
=
f
a
f
b
→
a
b
∈
E
96
95
adantr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
∧
f
x
y
=
g
x
y
→
f
x
y
=
f
a
f
b
→
a
b
∈
E
97
36
96
sylbid
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
∧
f
x
y
=
g
x
y
→
g
x
y
=
f
a
f
b
→
a
b
∈
E
98
33
97
mpdan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
g
x
y
=
f
a
f
b
→
a
b
∈
E
99
25
98
sylbird
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
x
y
∈
E
→
g
-1
f
a
f
b
=
x
y
→
a
b
∈
E
100
99
impancom
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
g
-1
f
a
f
b
=
x
y
→
x
y
∈
E
→
a
b
∈
E
101
18
100
mpd
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
∧
g
-1
f
a
f
b
=
x
y
→
a
b
∈
E
102
101
ex
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
∧
x
∈
V
∧
y
∈
V
→
g
-1
f
a
f
b
=
x
y
→
a
b
∈
E
103
102
rexlimdvva
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
→
∃
x
∈
V
∃
y
∈
V
g
-1
f
a
f
b
=
x
y
→
a
b
∈
E
104
13
103
mpd
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
∧
g
-1
f
a
f
b
∈
E
→
a
b
∈
E
105
8
104
mpdan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
∧
f
a
f
b
∈
K
→
a
b
∈
E
106
105
ex
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
a
∈
V
∧
b
∈
V
→
f
a
f
b
∈
K
→
a
b
∈
E