Metamath Proof Explorer


Theorem isomuspgrlem1

Description: Lemma 1 for isomuspgr . (Contributed by AV, 29-Nov-2022)

Ref Expression
Hypotheses isomushgr.v V=VtxA
isomushgr.w W=VtxB
isomushgr.e E=EdgA
isomushgr.k K=EdgB
Assertion isomuspgrlem1 AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKabE

Proof

Step Hyp Ref Expression
1 isomushgr.v V=VtxA
2 isomushgr.w W=VtxB
3 isomushgr.e E=EdgA
4 isomushgr.k K=EdgB
5 simpl g:E1-1 ontoKeEfe=geg:E1-1 ontoK
6 5 ad2antlr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVg:E1-1 ontoK
7 f1ocnvdm g:E1-1 ontoKfafbKg-1fafbE
8 6 7 sylan AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbE
9 uspgrupgr AUSHGraphAUPGraph
10 9 adantr AUSHGraphBUSHGraphAUPGraph
11 10 ad4antr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKAUPGraph
12 1 3 upgredg AUPGraphg-1fafbExVyVg-1fafb=xy
13 11 12 sylan AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVg-1fafb=xy
14 eleq1 g-1fafb=xyg-1fafbExyE
15 14 biimpd g-1fafb=xyg-1fafbExyE
16 15 com12 g-1fafbEg-1fafb=xyxyE
17 16 ad2antlr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVg-1fafb=xyxyE
18 17 imp AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVg-1fafb=xyxyE
19 5 ad6antlr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEg:E1-1 ontoK
20 simpr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyExyE
21 simpr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKfafbK
22 21 ad5ant12 AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfafbK
23 19 20 22 3jca AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEg:E1-1 ontoKxyEfafbK
24 f1ocnvfvb g:E1-1 ontoKxyEfafbKgxy=fafbg-1fafb=xy
25 23 24 syl AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEgxy=fafbg-1fafb=xy
26 imaeq2 e=xyfe=fxy
27 fveq2 e=xyge=gxy
28 26 27 eqeq12d e=xyfe=gefxy=gxy
29 28 rspccv eEfe=gexyEfxy=gxy
30 29 adantl g:E1-1 ontoKeEfe=gexyEfxy=gxy
31 30 adantl AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=gexyEfxy=gxy
32 31 ad4antr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfxy=gxy
33 32 imp AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfxy=gxy
34 eqeq1 gxy=fxygxy=fafbfxy=fafb
35 34 eqcoms fxy=gxygxy=fafbfxy=fafb
36 35 adantl AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfxy=gxygxy=fafbfxy=fafb
37 f1ofn f:V1-1 ontoWfFnV
38 37 ad6antlr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVfFnV
39 simpl xVyVxV
40 39 adantl AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxV
41 simpr xVyVyV
42 41 adantl AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVyV
43 38 40 42 3jca AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVfFnVxVyV
44 43 adantr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfFnVxVyV
45 fnimapr fFnVxVyVfxy=fxfy
46 44 45 syl AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfxy=fxfy
47 46 eqeq1d AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfxy=fafbfxfy=fafb
48 fvex fxV
49 fvex fyV
50 fvex faV
51 fvex fbV
52 48 49 50 51 preq12b fxfy=fafbfx=fafy=fbfx=fbfy=fa
53 f1of1 f:V1-1 ontoWf:V1-1W
54 simpl aVbVaV
55 54 39 anim12ci aVbVxVyVxVaV
56 f1veqaeq f:V1-1WxVaVfx=fax=a
57 53 55 56 syl2anr aVbVxVyVf:V1-1 ontoWfx=fax=a
58 simpr aVbVbV
59 58 41 anim12ci aVbVxVyVyVbV
60 f1veqaeq f:V1-1WyVbVfy=fby=b
61 53 59 60 syl2anr aVbVxVyVf:V1-1 ontoWfy=fby=b
62 57 61 anim12d aVbVxVyVf:V1-1 ontoWfx=fafy=fbx=ay=b
63 62 impcom fx=fafy=fbaVbVxVyVf:V1-1 ontoWx=ay=b
64 63 orcd fx=fafy=fbaVbVxVyVf:V1-1 ontoWx=ay=bx=by=a
65 64 ex fx=fafy=fbaVbVxVyVf:V1-1 ontoWx=ay=bx=by=a
66 58 39 anim12ci aVbVxVyVxVbV
67 f1veqaeq f:V1-1WxVbVfx=fbx=b
68 53 66 67 syl2anr aVbVxVyVf:V1-1 ontoWfx=fbx=b
69 54 41 anim12ci aVbVxVyVyVaV
70 f1veqaeq f:V1-1WyVaVfy=fay=a
71 53 69 70 syl2anr aVbVxVyVf:V1-1 ontoWfy=fay=a
72 68 71 anim12d aVbVxVyVf:V1-1 ontoWfx=fbfy=fax=by=a
73 72 impcom fx=fbfy=faaVbVxVyVf:V1-1 ontoWx=by=a
74 73 olcd fx=fbfy=faaVbVxVyVf:V1-1 ontoWx=ay=bx=by=a
75 74 ex fx=fbfy=faaVbVxVyVf:V1-1 ontoWx=ay=bx=by=a
76 65 75 jaoi fx=fafy=fbfx=fbfy=faaVbVxVyVf:V1-1 ontoWx=ay=bx=by=a
77 vex xV
78 vex yV
79 vex aV
80 vex bV
81 77 78 79 80 preq12b xy=abx=ay=bx=by=a
82 76 81 syl6ibr fx=fafy=fbfx=fbfy=faaVbVxVyVf:V1-1 ontoWxy=ab
83 52 82 sylbi fxfy=fafbaVbVxVyVf:V1-1 ontoWxy=ab
84 83 com12 aVbVxVyVf:V1-1 ontoWfxfy=fafbxy=ab
85 84 expcom f:V1-1 ontoWaVbVxVyVfxfy=fafbxy=ab
86 85 expd f:V1-1 ontoWaVbVxVyVfxfy=fafbxy=ab
87 86 ad2antlr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVxVyVfxfy=fafbxy=ab
88 87 imp AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVxVyVfxfy=fafbxy=ab
89 88 adantr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKxVyVfxfy=fafbxy=ab
90 89 adantr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVfxfy=fafbxy=ab
91 90 imp31 AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVfxfy=fafbxy=ab
92 91 eleq1d AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVfxfy=fafbxyEabE
93 92 biimpd AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVfxfy=fafbxyEabE
94 93 impancom AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfxfy=fafbabE
95 47 94 sylbid AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfxy=fafbabE
96 95 adantr AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfxy=gxyfxy=fafbabE
97 36 96 sylbid AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEfxy=gxygxy=fafbabE
98 33 97 mpdan AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEgxy=fafbabE
99 25 98 sylbird AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVxyEg-1fafb=xyabE
100 99 impancom AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVg-1fafb=xyxyEabE
101 18 100 mpd AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVg-1fafb=xyabE
102 101 ex AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVg-1fafb=xyabE
103 102 rexlimdvva AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbExVyVg-1fafb=xyabE
104 13 103 mpd AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKg-1fafbEabE
105 8 104 mpdan AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKabE
106 105 ex AUSHGraphBUSHGraphf:V1-1 ontoWg:E1-1 ontoKeEfe=geaVbVfafbKabE