Description: Lemma 2 for isomuspgrlem2 . (Contributed by AV, 29-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isomushgr.v | |
|
isomushgr.w | |
||
isomushgr.e | |
||
isomushgr.k | |
||
isomuspgrlem2.g | |
||
isomuspgrlem2.a | |
||
isomuspgrlem2.f | |
||
isomuspgrlem2.i | |
||
Assertion | isomuspgrlem2b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomushgr.v | |
|
2 | isomushgr.w | |
|
3 | isomushgr.e | |
|
4 | isomushgr.k | |
|
5 | isomuspgrlem2.g | |
|
6 | isomuspgrlem2.a | |
|
7 | isomuspgrlem2.f | |
|
8 | isomuspgrlem2.i | |
|
9 | uspgrupgr | |
|
10 | 6 9 | syl | |
11 | 1 3 | upgredg | |
12 | 10 11 | sylan | |
13 | preq12 | |
|
14 | 13 | eleq1d | |
15 | fveq2 | |
|
16 | 15 | adantr | |
17 | fveq2 | |
|
18 | 17 | adantl | |
19 | 16 18 | preq12d | |
20 | 19 | eleq1d | |
21 | 14 20 | bibi12d | |
22 | 21 | rspc2gv | |
23 | 8 22 | syl5com | |
24 | 23 | adantr | |
25 | 24 | imp | |
26 | bicom | |
|
27 | bianir | |
|
28 | 27 | ex | |
29 | 26 28 | biimtrid | |
30 | f1ofn | |
|
31 | 7 30 | syl | |
32 | 31 | adantr | |
33 | 32 | adantr | |
34 | simprl | |
|
35 | simprr | |
|
36 | 33 34 35 | 3jca | |
37 | 36 | adantl | |
38 | fnimapr | |
|
39 | 37 38 | syl | |
40 | 39 | eqcomd | |
41 | 40 | eleq1d | |
42 | 41 | biimpd | |
43 | 42 | ex | |
44 | 43 | com23 | |
45 | 29 44 | syld | |
46 | 45 | com13 | |
47 | 25 46 | mpd | |
48 | eleq1 | |
|
49 | imaeq2 | |
|
50 | 49 | eleq1d | |
51 | 48 50 | imbi12d | |
52 | 51 | adantl | |
53 | 52 | adantr | |
54 | 47 53 | mpbird | |
55 | 54 | exp31 | |
56 | 55 | com24 | |
57 | 56 | imp31 | |
58 | 57 | rexlimdvva | |
59 | 12 58 | mpd | |
60 | 59 | ralrimiva | |
61 | 5 | fmpt | |
62 | 60 61 | sylib | |