Metamath Proof Explorer


Theorem isomuspgrlem2b

Description: Lemma 2 for isomuspgrlem2 . (Contributed by AV, 29-Nov-2022)

Ref Expression
Hypotheses isomushgr.v V=VtxA
isomushgr.w W=VtxB
isomushgr.e E=EdgA
isomushgr.k K=EdgB
isomuspgrlem2.g G=xEFx
isomuspgrlem2.a φAUSHGraph
isomuspgrlem2.f φF:V1-1 ontoW
isomuspgrlem2.i φaVbVabEFaFbK
Assertion isomuspgrlem2b φG:EK

Proof

Step Hyp Ref Expression
1 isomushgr.v V=VtxA
2 isomushgr.w W=VtxB
3 isomushgr.e E=EdgA
4 isomushgr.k K=EdgB
5 isomuspgrlem2.g G=xEFx
6 isomuspgrlem2.a φAUSHGraph
7 isomuspgrlem2.f φF:V1-1 ontoW
8 isomuspgrlem2.i φaVbVabEFaFbK
9 uspgrupgr AUSHGraphAUPGraph
10 6 9 syl φAUPGraph
11 1 3 upgredg AUPGraphxEcVdVx=cd
12 10 11 sylan φxEcVdVx=cd
13 preq12 a=cb=dab=cd
14 13 eleq1d a=cb=dabEcdE
15 fveq2 a=cFa=Fc
16 15 adantr a=cb=dFa=Fc
17 fveq2 b=dFb=Fd
18 17 adantl a=cb=dFb=Fd
19 16 18 preq12d a=cb=dFaFb=FcFd
20 19 eleq1d a=cb=dFaFbKFcFdK
21 14 20 bibi12d a=cb=dabEFaFbKcdEFcFdK
22 21 rspc2gv cVdVaVbVabEFaFbKcdEFcFdK
23 8 22 syl5com φcVdVcdEFcFdK
24 23 adantr φx=cdcVdVcdEFcFdK
25 24 imp φx=cdcVdVcdEFcFdK
26 bicom cdEFcFdKFcFdKcdE
27 bianir cdEFcFdKcdEFcFdK
28 27 ex cdEFcFdKcdEFcFdK
29 26 28 biimtrid cdEcdEFcFdKFcFdK
30 f1ofn F:V1-1 ontoWFFnV
31 7 30 syl φFFnV
32 31 adantr φx=cdFFnV
33 32 adantr φx=cdcVdVFFnV
34 simprl φx=cdcVdVcV
35 simprr φx=cdcVdVdV
36 33 34 35 3jca φx=cdcVdVFFnVcVdV
37 36 adantl cdEφx=cdcVdVFFnVcVdV
38 fnimapr FFnVcVdVFcd=FcFd
39 37 38 syl cdEφx=cdcVdVFcd=FcFd
40 39 eqcomd cdEφx=cdcVdVFcFd=Fcd
41 40 eleq1d cdEφx=cdcVdVFcFdKFcdK
42 41 biimpd cdEφx=cdcVdVFcFdKFcdK
43 42 ex cdEφx=cdcVdVFcFdKFcdK
44 43 com23 cdEFcFdKφx=cdcVdVFcdK
45 29 44 syld cdEcdEFcFdKφx=cdcVdVFcdK
46 45 com13 φx=cdcVdVcdEFcFdKcdEFcdK
47 25 46 mpd φx=cdcVdVcdEFcdK
48 eleq1 x=cdxEcdE
49 imaeq2 x=cdFx=Fcd
50 49 eleq1d x=cdFxKFcdK
51 48 50 imbi12d x=cdxEFxKcdEFcdK
52 51 adantl φx=cdxEFxKcdEFcdK
53 52 adantr φx=cdcVdVxEFxKcdEFcdK
54 47 53 mpbird φx=cdcVdVxEFxK
55 54 exp31 φx=cdcVdVxEFxK
56 55 com24 φxEcVdVx=cdFxK
57 56 imp31 φxEcVdVx=cdFxK
58 57 rexlimdvva φxEcVdVx=cdFxK
59 12 58 mpd φxEFxK
60 59 ralrimiva φxEFxK
61 5 fmpt xEFxKG:EK
62 60 61 sylib φG:EK