Metamath Proof Explorer


Theorem isomuspgrlem2b

Description: Lemma 2 for isomuspgrlem2 . (Contributed by AV, 29-Nov-2022)

Ref Expression
Hypotheses isomushgr.v V = Vtx A
isomushgr.w W = Vtx B
isomushgr.e E = Edg A
isomushgr.k K = Edg B
isomuspgrlem2.g G = x E F x
isomuspgrlem2.a φ A USHGraph
isomuspgrlem2.f φ F : V 1-1 onto W
isomuspgrlem2.i φ a V b V a b E F a F b K
Assertion isomuspgrlem2b φ G : E K

Proof

Step Hyp Ref Expression
1 isomushgr.v V = Vtx A
2 isomushgr.w W = Vtx B
3 isomushgr.e E = Edg A
4 isomushgr.k K = Edg B
5 isomuspgrlem2.g G = x E F x
6 isomuspgrlem2.a φ A USHGraph
7 isomuspgrlem2.f φ F : V 1-1 onto W
8 isomuspgrlem2.i φ a V b V a b E F a F b K
9 uspgrupgr A USHGraph A UPGraph
10 6 9 syl φ A UPGraph
11 1 3 upgredg A UPGraph x E c V d V x = c d
12 10 11 sylan φ x E c V d V x = c d
13 preq12 a = c b = d a b = c d
14 13 eleq1d a = c b = d a b E c d E
15 fveq2 a = c F a = F c
16 15 adantr a = c b = d F a = F c
17 fveq2 b = d F b = F d
18 17 adantl a = c b = d F b = F d
19 16 18 preq12d a = c b = d F a F b = F c F d
20 19 eleq1d a = c b = d F a F b K F c F d K
21 14 20 bibi12d a = c b = d a b E F a F b K c d E F c F d K
22 21 rspc2gv c V d V a V b V a b E F a F b K c d E F c F d K
23 8 22 syl5com φ c V d V c d E F c F d K
24 23 adantr φ x = c d c V d V c d E F c F d K
25 24 imp φ x = c d c V d V c d E F c F d K
26 bicom c d E F c F d K F c F d K c d E
27 bianir c d E F c F d K c d E F c F d K
28 27 ex c d E F c F d K c d E F c F d K
29 26 28 syl5bi c d E c d E F c F d K F c F d K
30 f1ofn F : V 1-1 onto W F Fn V
31 7 30 syl φ F Fn V
32 31 adantr φ x = c d F Fn V
33 32 adantr φ x = c d c V d V F Fn V
34 simprl φ x = c d c V d V c V
35 simprr φ x = c d c V d V d V
36 33 34 35 3jca φ x = c d c V d V F Fn V c V d V
37 36 adantl c d E φ x = c d c V d V F Fn V c V d V
38 fnimapr F Fn V c V d V F c d = F c F d
39 37 38 syl c d E φ x = c d c V d V F c d = F c F d
40 39 eqcomd c d E φ x = c d c V d V F c F d = F c d
41 40 eleq1d c d E φ x = c d c V d V F c F d K F c d K
42 41 biimpd c d E φ x = c d c V d V F c F d K F c d K
43 42 ex c d E φ x = c d c V d V F c F d K F c d K
44 43 com23 c d E F c F d K φ x = c d c V d V F c d K
45 29 44 syld c d E c d E F c F d K φ x = c d c V d V F c d K
46 45 com13 φ x = c d c V d V c d E F c F d K c d E F c d K
47 25 46 mpd φ x = c d c V d V c d E F c d K
48 eleq1 x = c d x E c d E
49 imaeq2 x = c d F x = F c d
50 49 eleq1d x = c d F x K F c d K
51 48 50 imbi12d x = c d x E F x K c d E F c d K
52 51 adantl φ x = c d x E F x K c d E F c d K
53 52 adantr φ x = c d c V d V x E F x K c d E F c d K
54 47 53 mpbird φ x = c d c V d V x E F x K
55 54 exp31 φ x = c d c V d V x E F x K
56 55 com24 φ x E c V d V x = c d F x K
57 56 imp31 φ x E c V d V x = c d F x K
58 57 rexlimdvva φ x E c V d V x = c d F x K
59 12 58 mpd φ x E F x K
60 59 ralrimiva φ x E F x K
61 5 fmpt x E F x K G : E K
62 60 61 sylib φ G : E K