Metamath Proof Explorer


Theorem isumrpcl

Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumrpcl.1 Z = M
isumrpcl.2 W = N
isumrpcl.3 φ N Z
isumrpcl.4 φ k Z F k = A
isumrpcl.5 φ k Z A +
isumrpcl.6 φ seq M + F dom
Assertion isumrpcl φ k W A +

Proof

Step Hyp Ref Expression
1 isumrpcl.1 Z = M
2 isumrpcl.2 W = N
3 isumrpcl.3 φ N Z
4 isumrpcl.4 φ k Z F k = A
5 isumrpcl.5 φ k Z A +
6 isumrpcl.6 φ seq M + F dom
7 3 1 eleqtrdi φ N M
8 eluzelz N M N
9 7 8 syl φ N
10 uzss N M N M
11 7 10 syl φ N M
12 11 2 1 3sstr4g φ W Z
13 12 sselda φ k W k Z
14 13 4 syldan φ k W F k = A
15 5 rpred φ k Z A
16 13 15 syldan φ k W A
17 4 5 eqeltrd φ k Z F k +
18 17 rpcnd φ k Z F k
19 1 3 18 iserex φ seq M + F dom seq N + F dom
20 6 19 mpbid φ seq N + F dom
21 2 9 14 16 20 isumrecl φ k W A
22 fveq2 k = N F k = F N
23 22 eleq1d k = N F k + F N +
24 17 ralrimiva φ k Z F k +
25 23 24 3 rspcdva φ F N +
26 seq1 N seq N + F N = F N
27 9 26 syl φ seq N + F N = F N
28 uzid N N N
29 9 28 syl φ N N
30 29 2 eleqtrrdi φ N W
31 16 recnd φ k W A
32 2 9 14 31 20 isumclim2 φ seq N + F k W A
33 12 sseld φ m W m Z
34 fveq2 k = m F k = F m
35 34 eleq1d k = m F k + F m +
36 35 rspcv m Z k Z F k + F m +
37 33 24 36 syl6ci φ m W F m +
38 37 imp φ m W F m +
39 38 rpred φ m W F m
40 38 rpge0d φ m W 0 F m
41 2 30 32 39 40 climserle φ seq N + F N k W A
42 27 41 eqbrtrrd φ F N k W A
43 21 25 42 rpgecld φ k W A +