Metamath Proof Explorer


Theorem isumrpcl

Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumrpcl.1 Z=M
isumrpcl.2 W=N
isumrpcl.3 φNZ
isumrpcl.4 φkZFk=A
isumrpcl.5 φkZA+
isumrpcl.6 φseqM+Fdom
Assertion isumrpcl φkWA+

Proof

Step Hyp Ref Expression
1 isumrpcl.1 Z=M
2 isumrpcl.2 W=N
3 isumrpcl.3 φNZ
4 isumrpcl.4 φkZFk=A
5 isumrpcl.5 φkZA+
6 isumrpcl.6 φseqM+Fdom
7 3 1 eleqtrdi φNM
8 eluzelz NMN
9 7 8 syl φN
10 uzss NMNM
11 7 10 syl φNM
12 11 2 1 3sstr4g φWZ
13 12 sselda φkWkZ
14 13 4 syldan φkWFk=A
15 5 rpred φkZA
16 13 15 syldan φkWA
17 4 5 eqeltrd φkZFk+
18 17 rpcnd φkZFk
19 1 3 18 iserex φseqM+FdomseqN+Fdom
20 6 19 mpbid φseqN+Fdom
21 2 9 14 16 20 isumrecl φkWA
22 fveq2 k=NFk=FN
23 22 eleq1d k=NFk+FN+
24 17 ralrimiva φkZFk+
25 23 24 3 rspcdva φFN+
26 seq1 NseqN+FN=FN
27 9 26 syl φseqN+FN=FN
28 uzid NNN
29 9 28 syl φNN
30 29 2 eleqtrrdi φNW
31 16 recnd φkWA
32 2 9 14 31 20 isumclim2 φseqN+FkWA
33 12 sseld φmWmZ
34 fveq2 k=mFk=Fm
35 34 eleq1d k=mFk+Fm+
36 35 rspcv mZkZFk+Fm+
37 33 24 36 syl6ci φmWFm+
38 37 imp φmWFm+
39 38 rpred φmWFm
40 38 rpge0d φmW0Fm
41 2 30 32 39 40 climserle φseqN+FNkWA
42 27 41 eqbrtrrd φFNkWA
43 21 25 42 rpgecld φkWA+