Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 24-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumrpcl.1 | |
|
isumrpcl.2 | |
||
isumrpcl.3 | |
||
isumrpcl.4 | |
||
isumrpcl.5 | |
||
isumrpcl.6 | |
||
Assertion | isumrpcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrpcl.1 | |
|
2 | isumrpcl.2 | |
|
3 | isumrpcl.3 | |
|
4 | isumrpcl.4 | |
|
5 | isumrpcl.5 | |
|
6 | isumrpcl.6 | |
|
7 | 3 1 | eleqtrdi | |
8 | eluzelz | |
|
9 | 7 8 | syl | |
10 | uzss | |
|
11 | 7 10 | syl | |
12 | 11 2 1 | 3sstr4g | |
13 | 12 | sselda | |
14 | 13 4 | syldan | |
15 | 5 | rpred | |
16 | 13 15 | syldan | |
17 | 4 5 | eqeltrd | |
18 | 17 | rpcnd | |
19 | 1 3 18 | iserex | |
20 | 6 19 | mpbid | |
21 | 2 9 14 16 20 | isumrecl | |
22 | fveq2 | |
|
23 | 22 | eleq1d | |
24 | 17 | ralrimiva | |
25 | 23 24 3 | rspcdva | |
26 | seq1 | |
|
27 | 9 26 | syl | |
28 | uzid | |
|
29 | 9 28 | syl | |
30 | 29 2 | eleqtrrdi | |
31 | 16 | recnd | |
32 | 2 9 14 31 20 | isumclim2 | |
33 | 12 | sseld | |
34 | fveq2 | |
|
35 | 34 | eleq1d | |
36 | 35 | rspcv | |
37 | 33 24 36 | syl6ci | |
38 | 37 | imp | |
39 | 38 | rpred | |
40 | 38 | rpge0d | |
41 | 2 30 32 39 40 | climserle | |
42 | 27 41 | eqbrtrrd | |
43 | 21 25 42 | rpgecld | |