Metamath Proof Explorer


Theorem itg2monolem2

Description: Lemma for itg2mono . (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses itg2mono.1 G=xsuprannFnx<
itg2mono.2 φnFnMblFn
itg2mono.3 φnFn:0+∞
itg2mono.4 φnFnfFn+1
itg2mono.5 φxynFnxy
itg2mono.6 S=suprann2Fn*<
itg2monolem2.7 φPdom1
itg2monolem2.8 φPfG
itg2monolem2.9 φ¬1PS
Assertion itg2monolem2 φS

Proof

Step Hyp Ref Expression
1 itg2mono.1 G=xsuprannFnx<
2 itg2mono.2 φnFnMblFn
3 itg2mono.3 φnFn:0+∞
4 itg2mono.4 φnFnfFn+1
5 itg2mono.5 φxynFnxy
6 itg2mono.6 S=suprann2Fn*<
7 itg2monolem2.7 φPdom1
8 itg2monolem2.8 φPfG
9 itg2monolem2.9 φ¬1PS
10 icossicc 0+∞0+∞
11 fss Fn:0+∞0+∞0+∞Fn:0+∞
12 3 10 11 sylancl φnFn:0+∞
13 itg2cl Fn:0+∞2Fn*
14 12 13 syl φn2Fn*
15 14 fmpttd φn2Fn:*
16 15 frnd φrann2Fn*
17 supxrcl rann2Fn*suprann2Fn*<*
18 16 17 syl φsuprann2Fn*<*
19 6 18 eqeltrid φS*
20 itg1cl Pdom11P
21 7 20 syl φ1P
22 mnfxr −∞*
23 22 a1i φ−∞*
24 fveq2 n=1Fn=F1
25 24 feq1d n=1Fn:0+∞F1:0+∞
26 12 ralrimiva φnFn:0+∞
27 1nn 1
28 27 a1i φ1
29 25 26 28 rspcdva φF1:0+∞
30 itg2cl F1:0+∞2F1*
31 29 30 syl φ2F1*
32 itg2ge0 F1:0+∞02F1
33 29 32 syl φ02F1
34 mnflt0 −∞<0
35 0xr 0*
36 xrltletr −∞*0*2F1*−∞<002F1−∞<2F1
37 22 35 31 36 mp3an12i φ−∞<002F1−∞<2F1
38 34 37 mpani φ02F1−∞<2F1
39 33 38 mpd φ−∞<2F1
40 2fveq3 n=12Fn=2F1
41 eqid n2Fn=n2Fn
42 fvex 2F1V
43 40 41 42 fvmpt 1n2Fn1=2F1
44 27 43 ax-mp n2Fn1=2F1
45 15 ffnd φn2FnFn
46 fnfvelrn n2FnFn1n2Fn1rann2Fn
47 45 27 46 sylancl φn2Fn1rann2Fn
48 44 47 eqeltrrid φ2F1rann2Fn
49 supxrub rann2Fn*2F1rann2Fn2F1suprann2Fn*<
50 16 48 49 syl2anc φ2F1suprann2Fn*<
51 50 6 breqtrrdi φ2F1S
52 23 31 19 39 51 xrltletrd φ−∞<S
53 21 rexrd φ1P*
54 xrltnle S*1P*S<1P¬1PS
55 19 53 54 syl2anc φS<1P¬1PS
56 9 55 mpbird φS<1P
57 19 53 56 xrltled φS1P
58 xrre S*1P−∞<SS1PS
59 19 21 52 57 58 syl22anc φS