Description: Lemma for itg2mono . (Contributed by Mario Carneiro, 16-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itg2mono.1 | |
|
itg2mono.2 | |
||
itg2mono.3 | |
||
itg2mono.4 | |
||
itg2mono.5 | |
||
itg2mono.6 | |
||
itg2monolem2.7 | |
||
itg2monolem2.8 | |
||
itg2monolem2.9 | |
||
Assertion | itg2monolem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2mono.1 | |
|
2 | itg2mono.2 | |
|
3 | itg2mono.3 | |
|
4 | itg2mono.4 | |
|
5 | itg2mono.5 | |
|
6 | itg2mono.6 | |
|
7 | itg2monolem2.7 | |
|
8 | itg2monolem2.8 | |
|
9 | itg2monolem2.9 | |
|
10 | icossicc | |
|
11 | fss | |
|
12 | 3 10 11 | sylancl | |
13 | itg2cl | |
|
14 | 12 13 | syl | |
15 | 14 | fmpttd | |
16 | 15 | frnd | |
17 | supxrcl | |
|
18 | 16 17 | syl | |
19 | 6 18 | eqeltrid | |
20 | itg1cl | |
|
21 | 7 20 | syl | |
22 | mnfxr | |
|
23 | 22 | a1i | |
24 | fveq2 | |
|
25 | 24 | feq1d | |
26 | 12 | ralrimiva | |
27 | 1nn | |
|
28 | 27 | a1i | |
29 | 25 26 28 | rspcdva | |
30 | itg2cl | |
|
31 | 29 30 | syl | |
32 | itg2ge0 | |
|
33 | 29 32 | syl | |
34 | mnflt0 | |
|
35 | 0xr | |
|
36 | xrltletr | |
|
37 | 22 35 31 36 | mp3an12i | |
38 | 34 37 | mpani | |
39 | 33 38 | mpd | |
40 | 2fveq3 | |
|
41 | eqid | |
|
42 | fvex | |
|
43 | 40 41 42 | fvmpt | |
44 | 27 43 | ax-mp | |
45 | 15 | ffnd | |
46 | fnfvelrn | |
|
47 | 45 27 46 | sylancl | |
48 | 44 47 | eqeltrrid | |
49 | supxrub | |
|
50 | 16 48 49 | syl2anc | |
51 | 50 6 | breqtrrdi | |
52 | 23 31 19 39 51 | xrltletrd | |
53 | 21 | rexrd | |
54 | xrltnle | |
|
55 | 19 53 54 | syl2anc | |
56 | 9 55 | mpbird | |
57 | 19 53 56 | xrltled | |
58 | xrre | |
|
59 | 19 21 52 57 58 | syl22anc | |