Metamath Proof Explorer


Theorem itgioo

Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014)

Ref Expression
Hypotheses itgioo.1 φ A
itgioo.2 φ B
itgioo.3 φ x A B C
Assertion itgioo φ A B C dx = A B C dx

Proof

Step Hyp Ref Expression
1 itgioo.1 φ A
2 itgioo.2 φ B
3 itgioo.3 φ x A B C
4 ioossicc A B A B
5 4 a1i φ A B A B
6 iccssre A B A B
7 1 2 6 syl2anc φ A B
8 1 rexrd φ A *
9 2 rexrd φ B *
10 icc0 A * B * A B = B < A
11 8 9 10 syl2anc φ A B = B < A
12 11 biimpar φ B < A A B =
13 12 difeq1d φ B < A A B A B = A B
14 0dif A B =
15 0ss A B
16 14 15 eqsstri A B A B
17 13 16 eqsstrdi φ B < A A B A B A B
18 uncom A B A B = A B A B
19 8 adantr φ A B A *
20 9 adantr φ A B B *
21 simpr φ A B A B
22 prunioo A * B * A B A B A B = A B
23 19 20 21 22 syl3anc φ A B A B A B = A B
24 18 23 syl5req φ A B A B = A B A B
25 24 difeq1d φ A B A B A B = A B A B A B
26 difun2 A B A B A B = A B A B
27 25 26 eqtrdi φ A B A B A B = A B A B
28 difss A B A B A B
29 27 28 eqsstrdi φ A B A B A B A B
30 17 29 2 1 ltlecasei φ A B A B A B
31 1 2 prssd φ A B
32 prfi A B Fin
33 ovolfi A B Fin A B vol * A B = 0
34 32 31 33 sylancr φ vol * A B = 0
35 ovolssnul A B A B A B A B vol * A B = 0 vol * A B A B = 0
36 30 31 34 35 syl3anc φ vol * A B A B = 0
37 5 7 36 3 itgss3 φ x A B C 𝐿 1 x A B C 𝐿 1 A B C dx = A B C dx
38 37 simprd φ A B C dx = A B C dx