Metamath Proof Explorer


Theorem kgencmp2

Description: The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgencmp2 JTopJ𝑡KComp𝑘GenJ𝑡KComp

Proof

Step Hyp Ref Expression
1 kgencmp JTopJ𝑡KCompJ𝑡K=𝑘GenJ𝑡K
2 simpr JTopJ𝑡KCompJ𝑡KComp
3 1 2 eqeltrrd JTopJ𝑡KComp𝑘GenJ𝑡KComp
4 cmptop 𝑘GenJ𝑡KComp𝑘GenJ𝑡KTop
5 restrcl 𝑘GenJ𝑡KTop𝑘GenJVKV
6 5 simprd 𝑘GenJ𝑡KTopKV
7 4 6 syl 𝑘GenJ𝑡KCompKV
8 resttop JTopKVJ𝑡KTop
9 7 8 sylan2 JTop𝑘GenJ𝑡KCompJ𝑡KTop
10 toptopon2 J𝑡KTopJ𝑡KTopOnJ𝑡K
11 9 10 sylib JTop𝑘GenJ𝑡KCompJ𝑡KTopOnJ𝑡K
12 eqid J=J
13 12 kgenuni JTopJ=𝑘GenJ
14 13 adantr JTop𝑘GenJ𝑡KCompJ=𝑘GenJ
15 14 ineq2d JTop𝑘GenJ𝑡KCompKJ=K𝑘GenJ
16 12 restuni2 JTopKVKJ=J𝑡K
17 7 16 sylan2 JTop𝑘GenJ𝑡KCompKJ=J𝑡K
18 kgenftop JTop𝑘GenJTop
19 eqid 𝑘GenJ=𝑘GenJ
20 19 restuni2 𝑘GenJTopKVK𝑘GenJ=𝑘GenJ𝑡K
21 18 7 20 syl2an JTop𝑘GenJ𝑡KCompK𝑘GenJ=𝑘GenJ𝑡K
22 15 17 21 3eqtr3d JTop𝑘GenJ𝑡KCompJ𝑡K=𝑘GenJ𝑡K
23 22 fveq2d JTop𝑘GenJ𝑡KCompTopOnJ𝑡K=TopOn𝑘GenJ𝑡K
24 11 23 eleqtrd JTop𝑘GenJ𝑡KCompJ𝑡KTopOn𝑘GenJ𝑡K
25 simpr JTop𝑘GenJ𝑡KComp𝑘GenJ𝑡KComp
26 kgenss JTopJ𝑘GenJ
27 26 adantr JTop𝑘GenJ𝑡KCompJ𝑘GenJ
28 ssrest 𝑘GenJTopJ𝑘GenJJ𝑡K𝑘GenJ𝑡K
29 18 27 28 syl2an2r JTop𝑘GenJ𝑡KCompJ𝑡K𝑘GenJ𝑡K
30 eqid 𝑘GenJ𝑡K=𝑘GenJ𝑡K
31 30 sscmp J𝑡KTopOn𝑘GenJ𝑡K𝑘GenJ𝑡KCompJ𝑡K𝑘GenJ𝑡KJ𝑡KComp
32 24 25 29 31 syl3anc JTop𝑘GenJ𝑡KCompJ𝑡KComp
33 3 32 impbida JTopJ𝑡KComp𝑘GenJ𝑡KComp