Description: The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | kgencmp2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgencmp | |
|
2 | simpr | |
|
3 | 1 2 | eqeltrrd | |
4 | cmptop | |
|
5 | restrcl | |
|
6 | 5 | simprd | |
7 | 4 6 | syl | |
8 | resttop | |
|
9 | 7 8 | sylan2 | |
10 | toptopon2 | |
|
11 | 9 10 | sylib | |
12 | eqid | |
|
13 | 12 | kgenuni | |
14 | 13 | adantr | |
15 | 14 | ineq2d | |
16 | 12 | restuni2 | |
17 | 7 16 | sylan2 | |
18 | kgenftop | |
|
19 | eqid | |
|
20 | 19 | restuni2 | |
21 | 18 7 20 | syl2an | |
22 | 15 17 21 | 3eqtr3d | |
23 | 22 | fveq2d | |
24 | 11 23 | eleqtrd | |
25 | simpr | |
|
26 | kgenss | |
|
27 | 26 | adantr | |
28 | ssrest | |
|
29 | 18 27 28 | syl2an2r | |
30 | eqid | |
|
31 | 30 | sscmp | |
32 | 24 25 29 31 | syl3anc | |
33 | 3 32 | impbida | |