Step |
Hyp |
Ref |
Expression |
1 |
|
lawcos.1 |
|
2 |
|
lawcos.2 |
|
3 |
|
lawcos.3 |
|
4 |
|
lawcos.4 |
|
5 |
|
lawcos.5 |
|
6 |
|
subcl |
|
7 |
6
|
3adant2 |
|
8 |
7
|
adantr |
|
9 |
|
subcl |
|
10 |
9
|
3adant1 |
|
11 |
10
|
adantr |
|
12 |
|
subeq0 |
|
13 |
12
|
necon3bid |
|
14 |
13
|
bicomd |
|
15 |
14
|
3adant2 |
|
16 |
15
|
biimpa |
|
17 |
16
|
adantrr |
|
18 |
|
subeq0 |
|
19 |
18
|
necon3bid |
|
20 |
19
|
bicomd |
|
21 |
20
|
3adant1 |
|
22 |
21
|
biimpa |
|
23 |
22
|
adantrl |
|
24 |
8 11 17 23
|
lawcoslem1 |
|
25 |
|
nnncan2 |
|
26 |
25
|
fveq2d |
|
27 |
4 26
|
eqtr4id |
|
28 |
27
|
oveq1d |
|
29 |
28
|
adantr |
|
30 |
2
|
oveq1i |
|
31 |
3
|
oveq1i |
|
32 |
30 31
|
oveq12i |
|
33 |
8
|
abscld |
|
34 |
33
|
recnd |
|
35 |
34
|
sqcld |
|
36 |
11
|
abscld |
|
37 |
36
|
recnd |
|
38 |
37
|
sqcld |
|
39 |
35 38
|
addcomd |
|
40 |
32 39
|
eqtr4id |
|
41 |
2 3
|
oveq12i |
|
42 |
34 37
|
mulcomd |
|
43 |
41 42
|
eqtr4id |
|
44 |
5
|
fveq2i |
|
45 |
1 11 23 8 17
|
angvald |
|
46 |
45
|
fveq2d |
|
47 |
44 46
|
eqtrid |
|
48 |
8 11 23
|
divcld |
|
49 |
8 11 17 23
|
divne0d |
|
50 |
48 49
|
logcld |
|
51 |
50
|
imcld |
|
52 |
|
recosval |
|
53 |
51 52
|
syl |
|
54 |
47 53
|
eqtrd |
|
55 |
|
efiarg |
|
56 |
48 49 55
|
syl2anc |
|
57 |
56
|
fveq2d |
|
58 |
48
|
abscld |
|
59 |
48 49
|
absne0d |
|
60 |
58 48 59
|
redivd |
|
61 |
54 57 60
|
3eqtrd |
|
62 |
43 61
|
oveq12d |
|
63 |
62
|
oveq2d |
|
64 |
40 63
|
oveq12d |
|
65 |
24 29 64
|
3eqtr4d |
|