Metamath Proof Explorer


Theorem lcfl8

Description: Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lcfl8.h H=LHypK
lcfl8.o ˙=ocHKW
lcfl8.u U=DVecHKW
lcfl8.v V=BaseU
lcfl8.f F=LFnlU
lcfl8.l L=LKerU
lcfl8.c C=fF|˙˙Lf=Lf
lcfl8.k φKHLWH
lcfl8.g φGF
Assertion lcfl8 φGCxVLG=˙x

Proof

Step Hyp Ref Expression
1 lcfl8.h H=LHypK
2 lcfl8.o ˙=ocHKW
3 lcfl8.u U=DVecHKW
4 lcfl8.v V=BaseU
5 lcfl8.f F=LFnlU
6 lcfl8.l L=LKerU
7 lcfl8.c C=fF|˙˙Lf=Lf
8 lcfl8.k φKHLWH
9 lcfl8.g φGF
10 1 3 8 dvhlmod φULMod
11 10 adantr φGCULMod
12 eqid LSpanU=LSpanU
13 eqid LSAtomsU=LSAtomsU
14 4 12 13 islsati ULMod˙LGLSAtomsUxV˙LG=LSpanUx
15 11 14 sylan φGC˙LGLSAtomsUxV˙LG=LSpanUx
16 simpr φGC˙LGLSAtomsUxV˙LG=LSpanUx˙LG=LSpanUx
17 16 fveq2d φGC˙LGLSAtomsUxV˙LG=LSpanUx˙˙LG=˙LSpanUx
18 simp-4r φGC˙LGLSAtomsUxV˙LG=LSpanUxGC
19 9 ad4antr φGC˙LGLSAtomsUxV˙LG=LSpanUxGF
20 7 19 lcfl1 φGC˙LGLSAtomsUxV˙LG=LSpanUxGC˙˙LG=LG
21 18 20 mpbid φGC˙LGLSAtomsUxV˙LG=LSpanUx˙˙LG=LG
22 8 ad4antr φGC˙LGLSAtomsUxV˙LG=LSpanUxKHLWH
23 simplr φGC˙LGLSAtomsUxV˙LG=LSpanUxxV
24 23 snssd φGC˙LGLSAtomsUxV˙LG=LSpanUxxV
25 1 3 2 4 12 22 24 dochocsp φGC˙LGLSAtomsUxV˙LG=LSpanUx˙LSpanUx=˙x
26 17 21 25 3eqtr3d φGC˙LGLSAtomsUxV˙LG=LSpanUxLG=˙x
27 26 ex φGC˙LGLSAtomsUxV˙LG=LSpanUxLG=˙x
28 27 reximdva φGC˙LGLSAtomsUxV˙LG=LSpanUxxVLG=˙x
29 15 28 mpd φGC˙LGLSAtomsUxVLG=˙x
30 11 adantr φGCLG=VULMod
31 eqid 0U=0U
32 4 31 lmod0vcl ULMod0UV
33 30 32 syl φGCLG=V0UV
34 simpr φGCLG=VLG=V
35 8 adantr φGCKHLWH
36 35 adantr φGCLG=VKHLWH
37 1 3 2 4 31 doch0 KHLWH˙0U=V
38 36 37 syl φGCLG=V˙0U=V
39 34 38 eqtr4d φGCLG=VLG=˙0U
40 sneq x=0Ux=0U
41 40 fveq2d x=0U˙x=˙0U
42 41 rspceeqv 0UVLG=˙0UxVLG=˙x
43 33 39 42 syl2anc φGCLG=VxVLG=˙x
44 1 2 3 4 13 5 6 7 8 9 lcfl3 φGC˙LGLSAtomsULG=V
45 44 biimpa φGC˙LGLSAtomsULG=V
46 29 43 45 mpjaodan φGCxVLG=˙x
47 46 ex φGCxVLG=˙x
48 8 3ad2ant1 φxVLG=˙xKHLWH
49 simp2 φxVLG=˙xxV
50 49 snssd φxVLG=˙xxV
51 eqid DIsoHKW=DIsoHKW
52 1 51 3 4 2 dochcl KHLWHxV˙xranDIsoHKW
53 48 50 52 syl2anc φxVLG=˙x˙xranDIsoHKW
54 1 51 2 dochoc KHLWH˙xranDIsoHKW˙˙˙x=˙x
55 48 53 54 syl2anc φxVLG=˙x˙˙˙x=˙x
56 simp3 φxVLG=˙xLG=˙x
57 56 fveq2d φxVLG=˙x˙LG=˙˙x
58 57 fveq2d φxVLG=˙x˙˙LG=˙˙˙x
59 55 58 56 3eqtr4d φxVLG=˙x˙˙LG=LG
60 59 rexlimdv3a φxVLG=˙x˙˙LG=LG
61 7 9 lcfl1 φGC˙˙LG=LG
62 60 61 sylibrd φxVLG=˙xGC
63 47 62 impbid φGCxVLG=˙x