| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfr.h |
|
| 2 |
|
lcfr.o |
|
| 3 |
|
lcfr.u |
|
| 4 |
|
lcfr.s |
|
| 5 |
|
lcfr.f |
|
| 6 |
|
lcfr.l |
|
| 7 |
|
lcfr.d |
|
| 8 |
|
lcfr.t |
|
| 9 |
|
lcfr.c |
|
| 10 |
|
lcfr.q |
|
| 11 |
|
lcfr.k |
|
| 12 |
|
lcfr.r |
|
| 13 |
|
lcfr.rs |
|
| 14 |
|
2fveq3 |
|
| 15 |
14
|
cbviunv |
|
| 16 |
10 15
|
eqtri |
|
| 17 |
11
|
adantr |
|
| 18 |
|
eqid |
|
| 19 |
1 3 11
|
dvhlmod |
|
| 20 |
19
|
adantr |
|
| 21 |
|
eqid |
|
| 22 |
21 8
|
lssss |
|
| 23 |
12 22
|
syl |
|
| 24 |
5 7 21 19
|
ldualvbase |
|
| 25 |
23 24
|
sseqtrd |
|
| 26 |
25
|
sselda |
|
| 27 |
18 5 6 20 26
|
lkrssv |
|
| 28 |
1 3 18 2
|
dochssv |
|
| 29 |
17 27 28
|
syl2anc |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
|
iunss |
|
| 32 |
30 31
|
sylibr |
|
| 33 |
16 32
|
eqsstrid |
|
| 34 |
16
|
a1i |
|
| 35 |
7 19
|
lduallmod |
|
| 36 |
|
eqid |
|
| 37 |
36 8
|
lss0cl |
|
| 38 |
35 12 37
|
syl2anc |
|
| 39 |
5 7 36 19
|
ldual0vcl |
|
| 40 |
18 5 6 19 39
|
lkrssv |
|
| 41 |
1 3 18 4 2
|
dochlss |
|
| 42 |
11 40 41
|
syl2anc |
|
| 43 |
|
eqid |
|
| 44 |
43 4
|
lss0cl |
|
| 45 |
19 42 44
|
syl2anc |
|
| 46 |
|
2fveq3 |
|
| 47 |
46
|
eleq2d |
|
| 48 |
47
|
rspcev |
|
| 49 |
38 45 48
|
syl2anc |
|
| 50 |
|
eliun |
|
| 51 |
49 50
|
sylibr |
|
| 52 |
51
|
ne0d |
|
| 53 |
34 52
|
eqnetrd |
|
| 54 |
|
eqid |
|
| 55 |
|
rabeq |
|
| 56 |
5 55
|
ax-mp |
|
| 57 |
9 56
|
eqtri |
|
| 58 |
11
|
adantr |
|
| 59 |
12
|
adantr |
|
| 60 |
13
|
adantr |
|
| 61 |
|
simpr2 |
|
| 62 |
|
eqid |
|
| 63 |
|
eqid |
|
| 64 |
|
eqid |
|
| 65 |
|
simpr1 |
|
| 66 |
1 2 3 18 5 6 7 8 58 59 16 61 62 63 64 65
|
lcfrlem5 |
|
| 67 |
|
simpr3 |
|
| 68 |
1 2 3 54 5 6 7 8 57 16 58 59 60 66 67
|
lcfrlem42 |
|
| 69 |
68
|
ralrimivvva |
|
| 70 |
62 63 18 54 64 4
|
islss |
|
| 71 |
33 53 69 70
|
syl3anbrc |
|