Metamath Proof Explorer


Theorem lcoel0

Description: The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion lcoel0 MLModV𝒫BaseM0MMLinCoV

Proof

Step Hyp Ref Expression
1 fvex 0MV
2 1 snid 0M0M
3 oveq2 V=MLinCoV=MLinCo
4 lmodgrp MLModMGrp
5 grpmnd MGrpMMnd
6 lco0 MMndMLinCo=0M
7 4 5 6 3syl MLModMLinCo=0M
8 7 adantr MLModV𝒫BaseMMLinCo=0M
9 3 8 sylan9eq V=MLModV𝒫BaseMMLinCoV=0M
10 2 9 eleqtrrid V=MLModV𝒫BaseM0MMLinCoV
11 eqid BaseM=BaseM
12 eqid 0M=0M
13 11 12 lmod0vcl MLMod0MBaseM
14 13 adantr MLModV𝒫BaseM0MBaseM
15 14 adantl ¬V=MLModV𝒫BaseM0MBaseM
16 eqid ScalarM=ScalarM
17 eqid 0ScalarM=0ScalarM
18 eqidd v=w0ScalarM=0ScalarM
19 18 cbvmptv vV0ScalarM=wV0ScalarM
20 eqid BaseScalarM=BaseScalarM
21 11 16 17 12 19 20 lcoc0 MLModV𝒫BaseMvV0ScalarMBaseScalarMVfinSupp0ScalarMvV0ScalarMvV0ScalarMlinCMV=0M
22 21 adantl ¬V=MLModV𝒫BaseMvV0ScalarMBaseScalarMVfinSupp0ScalarMvV0ScalarMvV0ScalarMlinCMV=0M
23 simpl vV0ScalarMBaseScalarMV¬V=MLModV𝒫BaseMvV0ScalarMBaseScalarMV
24 breq1 s=vV0ScalarMfinSupp0ScalarMsfinSupp0ScalarMvV0ScalarM
25 oveq1 s=vV0ScalarMslinCMV=vV0ScalarMlinCMV
26 25 eqeq2d s=vV0ScalarM0M=slinCMV0M=vV0ScalarMlinCMV
27 eqcom 0M=vV0ScalarMlinCMVvV0ScalarMlinCMV=0M
28 26 27 bitrdi s=vV0ScalarM0M=slinCMVvV0ScalarMlinCMV=0M
29 24 28 anbi12d s=vV0ScalarMfinSupp0ScalarMs0M=slinCMVfinSupp0ScalarMvV0ScalarMvV0ScalarMlinCMV=0M
30 29 adantl vV0ScalarMBaseScalarMV¬V=MLModV𝒫BaseMs=vV0ScalarMfinSupp0ScalarMs0M=slinCMVfinSupp0ScalarMvV0ScalarMvV0ScalarMlinCMV=0M
31 23 30 rspcedv vV0ScalarMBaseScalarMV¬V=MLModV𝒫BaseMfinSupp0ScalarMvV0ScalarMvV0ScalarMlinCMV=0MsBaseScalarMVfinSupp0ScalarMs0M=slinCMV
32 31 ex vV0ScalarMBaseScalarMV¬V=MLModV𝒫BaseMfinSupp0ScalarMvV0ScalarMvV0ScalarMlinCMV=0MsBaseScalarMVfinSupp0ScalarMs0M=slinCMV
33 32 com23 vV0ScalarMBaseScalarMVfinSupp0ScalarMvV0ScalarMvV0ScalarMlinCMV=0M¬V=MLModV𝒫BaseMsBaseScalarMVfinSupp0ScalarMs0M=slinCMV
34 33 3impib vV0ScalarMBaseScalarMVfinSupp0ScalarMvV0ScalarMvV0ScalarMlinCMV=0M¬V=MLModV𝒫BaseMsBaseScalarMVfinSupp0ScalarMs0M=slinCMV
35 22 34 mpcom ¬V=MLModV𝒫BaseMsBaseScalarMVfinSupp0ScalarMs0M=slinCMV
36 11 16 20 lcoval MLModV𝒫BaseM0MMLinCoV0MBaseMsBaseScalarMVfinSupp0ScalarMs0M=slinCMV
37 36 adantl ¬V=MLModV𝒫BaseM0MMLinCoV0MBaseMsBaseScalarMVfinSupp0ScalarMs0M=slinCMV
38 15 35 37 mpbir2and ¬V=MLModV𝒫BaseM0MMLinCoV
39 10 38 pm2.61ian MLModV𝒫BaseM0MMLinCoV