Metamath Proof Explorer


Theorem ldualgrplem

Description: Lemma for ldualgrp . (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses ldualgrp.d D=LDualW
ldualgrp.w φWLMod
ldualgrp.v V=BaseW
ldualgrp.p +˙=f+W
ldualgrp.f F=LFnlW
ldualgrp.r R=ScalarW
ldualgrp.k K=BaseR
ldualgrp.t ×˙=R
ldualgrp.o O=opprR
ldualgrp.s ·˙=D
Assertion ldualgrplem φDGrp

Proof

Step Hyp Ref Expression
1 ldualgrp.d D=LDualW
2 ldualgrp.w φWLMod
3 ldualgrp.v V=BaseW
4 ldualgrp.p +˙=f+W
5 ldualgrp.f F=LFnlW
6 ldualgrp.r R=ScalarW
7 ldualgrp.k K=BaseR
8 ldualgrp.t ×˙=R
9 ldualgrp.o O=opprR
10 ldualgrp.s ·˙=D
11 eqid BaseD=BaseD
12 5 1 11 2 ldualvbase φBaseD=F
13 12 eqcomd φF=BaseD
14 eqidd φ+D=+D
15 eqid +D=+D
16 2 3ad2ant1 φxFyFWLMod
17 simp2 φxFyFxF
18 simp3 φxFyFyF
19 5 1 15 16 17 18 ldualvaddcl φxFyFx+DyF
20 eqid +R=+R
21 2 adantr φxFyFzFWLMod
22 simpr2 φxFyFzFyF
23 simpr3 φxFyFzFzF
24 5 6 20 1 15 21 22 23 ldualvadd φxFyFzFy+Dz=y+Rfz
25 24 oveq2d φxFyFzFx+Rfy+Dz=x+Rfy+Rfz
26 simpr1 φxFyFzFxF
27 5 1 15 21 22 23 ldualvaddcl φxFyFzFy+DzF
28 5 6 20 1 15 21 26 27 ldualvadd φxFyFzFx+Dy+Dz=x+Rfy+Dz
29 5 1 15 21 26 22 ldualvaddcl φxFyFzFx+DyF
30 5 6 20 1 15 21 29 23 ldualvadd φxFyFzFx+Dy+Dz=x+Dy+Rfz
31 5 6 20 1 15 21 26 22 ldualvadd φxFyFzFx+Dy=x+Rfy
32 31 oveq1d φxFyFzFx+Dy+Rfz=x+Rfy+Rfz
33 6 20 5 21 26 22 23 lfladdass φxFyFzFx+Rfy+Rfz=x+Rfy+Rfz
34 30 32 33 3eqtrd φxFyFzFx+Dy+Dz=x+Rfy+Rfz
35 25 28 34 3eqtr4rd φxFyFzFx+Dy+Dz=x+Dy+Dz
36 eqid 0R=0R
37 6 36 3 5 lfl0f WLModV×0RF
38 2 37 syl φV×0RF
39 2 adantr φxFWLMod
40 38 adantr φxFV×0RF
41 simpr φxFxF
42 5 6 20 1 15 39 40 41 ldualvadd φxFV×0R+Dx=V×0R+Rfx
43 3 6 20 36 5 39 41 lfladd0l φxFV×0R+Rfx=x
44 42 43 eqtrd φxFV×0R+Dx=x
45 eqid invgR=invgR
46 eqid zVinvgRxz=zVinvgRxz
47 3 6 45 46 5 39 41 lflnegcl φxFzVinvgRxzF
48 5 6 20 1 15 39 47 41 ldualvadd φxFzVinvgRxz+Dx=zVinvgRxz+Rfx
49 3 6 45 46 5 39 41 20 36 lflnegl φxFzVinvgRxz+Rfx=V×0R
50 48 49 eqtrd φxFzVinvgRxz+Dx=V×0R
51 13 14 19 35 38 44 47 50 isgrpd φDGrp