| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ldualgrp.d |  | 
						
							| 2 |  | ldualgrp.w |  | 
						
							| 3 |  | ldualgrp.v |  | 
						
							| 4 |  | ldualgrp.p |  | 
						
							| 5 |  | ldualgrp.f |  | 
						
							| 6 |  | ldualgrp.r |  | 
						
							| 7 |  | ldualgrp.k |  | 
						
							| 8 |  | ldualgrp.t |  | 
						
							| 9 |  | ldualgrp.o |  | 
						
							| 10 |  | ldualgrp.s |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 5 1 11 2 | ldualvbase |  | 
						
							| 13 | 12 | eqcomd |  | 
						
							| 14 |  | eqidd |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 2 | 3ad2ant1 |  | 
						
							| 17 |  | simp2 |  | 
						
							| 18 |  | simp3 |  | 
						
							| 19 | 5 1 15 16 17 18 | ldualvaddcl |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 2 | adantr |  | 
						
							| 22 |  | simpr2 |  | 
						
							| 23 |  | simpr3 |  | 
						
							| 24 | 5 6 20 1 15 21 22 23 | ldualvadd |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 |  | simpr1 |  | 
						
							| 27 | 5 1 15 21 22 23 | ldualvaddcl |  | 
						
							| 28 | 5 6 20 1 15 21 26 27 | ldualvadd |  | 
						
							| 29 | 5 1 15 21 26 22 | ldualvaddcl |  | 
						
							| 30 | 5 6 20 1 15 21 29 23 | ldualvadd |  | 
						
							| 31 | 5 6 20 1 15 21 26 22 | ldualvadd |  | 
						
							| 32 | 31 | oveq1d |  | 
						
							| 33 | 6 20 5 21 26 22 23 | lfladdass |  | 
						
							| 34 | 30 32 33 | 3eqtrd |  | 
						
							| 35 | 25 28 34 | 3eqtr4rd |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 6 36 3 5 | lfl0f |  | 
						
							| 38 | 2 37 | syl |  | 
						
							| 39 | 2 | adantr |  | 
						
							| 40 | 38 | adantr |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 5 6 20 1 15 39 40 41 | ldualvadd |  | 
						
							| 43 | 3 6 20 36 5 39 41 | lfladd0l |  | 
						
							| 44 | 42 43 | eqtrd |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 | 3 6 45 46 5 39 41 | lflnegcl |  | 
						
							| 48 | 5 6 20 1 15 39 47 41 | ldualvadd |  | 
						
							| 49 | 3 6 45 46 5 39 41 20 36 | lflnegl |  | 
						
							| 50 | 48 49 | eqtrd |  | 
						
							| 51 | 13 14 19 35 38 44 47 50 | isgrpd |  |