Description: Lemma for ldualgrp . (Contributed by NM, 22-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualgrp.d | |
|
ldualgrp.w | |
||
ldualgrp.v | |
||
ldualgrp.p | |
||
ldualgrp.f | |
||
ldualgrp.r | |
||
ldualgrp.k | |
||
ldualgrp.t | |
||
ldualgrp.o | |
||
ldualgrp.s | |
||
Assertion | ldualgrplem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualgrp.d | |
|
2 | ldualgrp.w | |
|
3 | ldualgrp.v | |
|
4 | ldualgrp.p | |
|
5 | ldualgrp.f | |
|
6 | ldualgrp.r | |
|
7 | ldualgrp.k | |
|
8 | ldualgrp.t | |
|
9 | ldualgrp.o | |
|
10 | ldualgrp.s | |
|
11 | eqid | |
|
12 | 5 1 11 2 | ldualvbase | |
13 | 12 | eqcomd | |
14 | eqidd | |
|
15 | eqid | |
|
16 | 2 | 3ad2ant1 | |
17 | simp2 | |
|
18 | simp3 | |
|
19 | 5 1 15 16 17 18 | ldualvaddcl | |
20 | eqid | |
|
21 | 2 | adantr | |
22 | simpr2 | |
|
23 | simpr3 | |
|
24 | 5 6 20 1 15 21 22 23 | ldualvadd | |
25 | 24 | oveq2d | |
26 | simpr1 | |
|
27 | 5 1 15 21 22 23 | ldualvaddcl | |
28 | 5 6 20 1 15 21 26 27 | ldualvadd | |
29 | 5 1 15 21 26 22 | ldualvaddcl | |
30 | 5 6 20 1 15 21 29 23 | ldualvadd | |
31 | 5 6 20 1 15 21 26 22 | ldualvadd | |
32 | 31 | oveq1d | |
33 | 6 20 5 21 26 22 23 | lfladdass | |
34 | 30 32 33 | 3eqtrd | |
35 | 25 28 34 | 3eqtr4rd | |
36 | eqid | |
|
37 | 6 36 3 5 | lfl0f | |
38 | 2 37 | syl | |
39 | 2 | adantr | |
40 | 38 | adantr | |
41 | simpr | |
|
42 | 5 6 20 1 15 39 40 41 | ldualvadd | |
43 | 3 6 20 36 5 39 41 | lfladd0l | |
44 | 42 43 | eqtrd | |
45 | eqid | |
|
46 | eqid | |
|
47 | 3 6 45 46 5 39 41 | lflnegcl | |
48 | 5 6 20 1 15 39 47 41 | ldualvadd | |
49 | 3 6 45 46 5 39 41 20 36 | lflnegl | |
50 | 48 49 | eqtrd | |
51 | 13 14 19 35 38 44 47 50 | isgrpd | |