Description: A bounded Hermitian operator is less than or equal to its norm times the identity operator. (Contributed by NM, 11-Aug-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | leopnmid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopre | |
|
2 | 1 | adantlr | |
3 | 1 | recnd | |
4 | 3 | abscld | |
5 | 4 | adantlr | |
6 | idhmop | |
|
7 | hmopm | |
|
8 | 6 7 | mpan2 | |
9 | hmopre | |
|
10 | 8 9 | sylan | |
11 | 10 | adantll | |
12 | 1 | leabsd | |
13 | 12 | adantlr | |
14 | hmopf | |
|
15 | ffvelcdm | |
|
16 | normcl | |
|
17 | 15 16 | syl | |
18 | 14 17 | sylan | |
19 | 18 | adantlr | |
20 | normcl | |
|
21 | 20 | adantl | |
22 | 19 21 | remulcld | |
23 | 14 15 | sylan | |
24 | bcs | |
|
25 | 23 24 | sylancom | |
26 | 25 | adantlr | |
27 | remulcl | |
|
28 | 20 27 | sylan2 | |
29 | 28 | adantll | |
30 | normge0 | |
|
31 | 20 30 | jca | |
32 | 31 | adantl | |
33 | hmoplin | |
|
34 | elbdop2 | |
|
35 | 34 | biimpri | |
36 | 33 35 | sylan | |
37 | nmbdoplb | |
|
38 | 36 37 | sylan | |
39 | lemul1a | |
|
40 | 19 29 32 38 39 | syl31anc | |
41 | recn | |
|
42 | 41 | ad2antlr | |
43 | 21 | recnd | |
44 | 42 43 43 | mulassd | |
45 | simpr | |
|
46 | ax-his3 | |
|
47 | 42 45 45 46 | syl3anc | |
48 | 20 | recnd | |
49 | 48 | sqvald | |
50 | normsq | |
|
51 | 49 50 | eqtr3d | |
52 | 51 | oveq2d | |
53 | 52 | adantl | |
54 | 47 53 | eqtr4d | |
55 | 44 54 | eqtr4d | |
56 | hoif | |
|
57 | f1of | |
|
58 | 56 57 | mp1i | |
59 | homval | |
|
60 | 42 58 45 59 | syl3anc | |
61 | hoival | |
|
62 | 61 | oveq2d | |
63 | 62 | adantl | |
64 | 60 63 | eqtrd | |
65 | 64 | oveq1d | |
66 | 55 65 | eqtr4d | |
67 | 40 66 | breqtrd | |
68 | 5 22 11 26 67 | letrd | |
69 | 2 5 11 13 68 | letrd | |
70 | 69 | ralrimiva | |
71 | leop2 | |
|
72 | 8 71 | sylan2 | |
73 | 70 72 | mpbird | |