Metamath Proof Explorer


Theorem leopnmid

Description: A bounded Hermitian operator is less than or equal to its norm times the identity operator. (Contributed by NM, 11-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion leopnmid THrmOpnormopTTopnormopT·opIop

Proof

Step Hyp Ref Expression
1 hmopre THrmOpxTxihx
2 1 adantlr THrmOpnormopTxTxihx
3 1 recnd THrmOpxTxihx
4 3 abscld THrmOpxTxihx
5 4 adantlr THrmOpnormopTxTxihx
6 idhmop IopHrmOp
7 hmopm normopTIopHrmOpnormopT·opIopHrmOp
8 6 7 mpan2 normopTnormopT·opIopHrmOp
9 hmopre normopT·opIopHrmOpxnormopT·opIopxihx
10 8 9 sylan normopTxnormopT·opIopxihx
11 10 adantll THrmOpnormopTxnormopT·opIopxihx
12 1 leabsd THrmOpxTxihxTxihx
13 12 adantlr THrmOpnormopTxTxihxTxihx
14 hmopf THrmOpT:
15 ffvelcdm T:xTx
16 normcl TxnormTx
17 15 16 syl T:xnormTx
18 14 17 sylan THrmOpxnormTx
19 18 adantlr THrmOpnormopTxnormTx
20 normcl xnormx
21 20 adantl THrmOpnormopTxnormx
22 19 21 remulcld THrmOpnormopTxnormTxnormx
23 14 15 sylan THrmOpxTx
24 bcs TxxTxihxnormTxnormx
25 23 24 sylancom THrmOpxTxihxnormTxnormx
26 25 adantlr THrmOpnormopTxTxihxnormTxnormx
27 remulcl normopTnormxnormopTnormx
28 20 27 sylan2 normopTxnormopTnormx
29 28 adantll THrmOpnormopTxnormopTnormx
30 normge0 x0normx
31 20 30 jca xnormx0normx
32 31 adantl THrmOpnormopTxnormx0normx
33 hmoplin THrmOpTLinOp
34 elbdop2 TBndLinOpTLinOpnormopT
35 34 biimpri TLinOpnormopTTBndLinOp
36 33 35 sylan THrmOpnormopTTBndLinOp
37 nmbdoplb TBndLinOpxnormTxnormopTnormx
38 36 37 sylan THrmOpnormopTxnormTxnormopTnormx
39 lemul1a normTxnormopTnormxnormx0normxnormTxnormopTnormxnormTxnormxnormopTnormxnormx
40 19 29 32 38 39 syl31anc THrmOpnormopTxnormTxnormxnormopTnormxnormx
41 recn normopTnormopT
42 41 ad2antlr THrmOpnormopTxnormopT
43 21 recnd THrmOpnormopTxnormx
44 42 43 43 mulassd THrmOpnormopTxnormopTnormxnormx=normopTnormxnormx
45 simpr THrmOpnormopTxx
46 ax-his3 normopTxxnormopTxihx=normopTxihx
47 42 45 45 46 syl3anc THrmOpnormopTxnormopTxihx=normopTxihx
48 20 recnd xnormx
49 48 sqvald xnormx2=normxnormx
50 normsq xnormx2=xihx
51 49 50 eqtr3d xnormxnormx=xihx
52 51 oveq2d xnormopTnormxnormx=normopTxihx
53 52 adantl THrmOpnormopTxnormopTnormxnormx=normopTxihx
54 47 53 eqtr4d THrmOpnormopTxnormopTxihx=normopTnormxnormx
55 44 54 eqtr4d THrmOpnormopTxnormopTnormxnormx=normopTxihx
56 hoif Iop:1-1 onto
57 f1of Iop:1-1 ontoIop:
58 56 57 mp1i THrmOpnormopTxIop:
59 homval normopTIop:xnormopT·opIopx=normopTIopx
60 42 58 45 59 syl3anc THrmOpnormopTxnormopT·opIopx=normopTIopx
61 hoival xIopx=x
62 61 oveq2d xnormopTIopx=normopTx
63 62 adantl THrmOpnormopTxnormopTIopx=normopTx
64 60 63 eqtrd THrmOpnormopTxnormopT·opIopx=normopTx
65 64 oveq1d THrmOpnormopTxnormopT·opIopxihx=normopTxihx
66 55 65 eqtr4d THrmOpnormopTxnormopTnormxnormx=normopT·opIopxihx
67 40 66 breqtrd THrmOpnormopTxnormTxnormxnormopT·opIopxihx
68 5 22 11 26 67 letrd THrmOpnormopTxTxihxnormopT·opIopxihx
69 2 5 11 13 68 letrd THrmOpnormopTxTxihxnormopT·opIopxihx
70 69 ralrimiva THrmOpnormopTxTxihxnormopT·opIopxihx
71 leop2 THrmOpnormopT·opIopHrmOpTopnormopT·opIopxTxihxnormopT·opIopxihx
72 8 71 sylan2 THrmOpnormopTTopnormopT·opIopxTxihxnormopT·opIopxihx
73 70 72 mpbird THrmOpnormopTTopnormopT·opIop