Metamath Proof Explorer


Theorem lflnegcl

Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp , and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses lflnegcl.v V=BaseW
lflnegcl.r R=ScalarW
lflnegcl.i I=invgR
lflnegcl.n N=xVIGx
lflnegcl.f F=LFnlW
lflnegcl.w φWLMod
lflnegcl.g φGF
Assertion lflnegcl φNF

Proof

Step Hyp Ref Expression
1 lflnegcl.v V=BaseW
2 lflnegcl.r R=ScalarW
3 lflnegcl.i I=invgR
4 lflnegcl.n N=xVIGx
5 lflnegcl.f F=LFnlW
6 lflnegcl.w φWLMod
7 lflnegcl.g φGF
8 2 lmodring WLModRRing
9 6 8 syl φRRing
10 ringgrp RRingRGrp
11 9 10 syl φRGrp
12 11 adantr φxVRGrp
13 6 adantr φxVWLMod
14 7 adantr φxVGF
15 simpr φxVxV
16 eqid BaseR=BaseR
17 2 16 1 5 lflcl WLModGFxVGxBaseR
18 13 14 15 17 syl3anc φxVGxBaseR
19 16 3 grpinvcl RGrpGxBaseRIGxBaseR
20 12 18 19 syl2anc φxVIGxBaseR
21 20 4 fmptd φN:VBaseR
22 ringabl RRingRAbel
23 9 22 syl φRAbel
24 23 adantr φkBaseRyVzVRAbel
25 9 adantr φkBaseRyVzVRRing
26 simpr1 φkBaseRyVzVkBaseR
27 6 adantr φkBaseRyVzVWLMod
28 7 adantr φkBaseRyVzVGF
29 simpr2 φkBaseRyVzVyV
30 2 16 1 5 lflcl WLModGFyVGyBaseR
31 27 28 29 30 syl3anc φkBaseRyVzVGyBaseR
32 eqid R=R
33 16 32 ringcl RRingkBaseRGyBaseRkRGyBaseR
34 25 26 31 33 syl3anc φkBaseRyVzVkRGyBaseR
35 simpr3 φkBaseRyVzVzV
36 2 16 1 5 lflcl WLModGFzVGzBaseR
37 27 28 35 36 syl3anc φkBaseRyVzVGzBaseR
38 eqid +R=+R
39 16 38 3 ablinvadd RAbelkRGyBaseRGzBaseRIkRGy+RGz=IkRGy+RIGz
40 24 34 37 39 syl3anc φkBaseRyVzVIkRGy+RGz=IkRGy+RIGz
41 eqid +W=+W
42 eqid W=W
43 1 41 2 42 16 38 32 5 lfli WLModGFkBaseRyVzVGkWy+Wz=kRGy+RGz
44 27 28 26 29 35 43 syl113anc φkBaseRyVzVGkWy+Wz=kRGy+RGz
45 44 fveq2d φkBaseRyVzVIGkWy+Wz=IkRGy+RGz
46 16 32 3 25 26 31 ringmneg2 φkBaseRyVzVkRIGy=IkRGy
47 46 oveq1d φkBaseRyVzVkRIGy+RIGz=IkRGy+RIGz
48 40 45 47 3eqtr4d φkBaseRyVzVIGkWy+Wz=kRIGy+RIGz
49 1 2 42 16 lmodvscl WLModkBaseRyVkWyV
50 27 26 29 49 syl3anc φkBaseRyVzVkWyV
51 1 41 lmodvacl WLModkWyVzVkWy+WzV
52 27 50 35 51 syl3anc φkBaseRyVzVkWy+WzV
53 2fveq3 x=kWy+WzIGx=IGkWy+Wz
54 fvex IGkWy+WzV
55 53 4 54 fvmpt kWy+WzVNkWy+Wz=IGkWy+Wz
56 52 55 syl φkBaseRyVzVNkWy+Wz=IGkWy+Wz
57 2fveq3 x=yIGx=IGy
58 fvex IGyV
59 57 4 58 fvmpt yVNy=IGy
60 29 59 syl φkBaseRyVzVNy=IGy
61 60 oveq2d φkBaseRyVzVkRNy=kRIGy
62 2fveq3 x=zIGx=IGz
63 fvex IGzV
64 62 4 63 fvmpt zVNz=IGz
65 35 64 syl φkBaseRyVzVNz=IGz
66 61 65 oveq12d φkBaseRyVzVkRNy+RNz=kRIGy+RIGz
67 48 56 66 3eqtr4d φkBaseRyVzVNkWy+Wz=kRNy+RNz
68 67 ralrimivvva φkBaseRyVzVNkWy+Wz=kRNy+RNz
69 1 41 2 42 16 38 32 5 islfl WLModNFN:VBaseRkBaseRyVzVNkWy+Wz=kRNy+RNz
70 6 69 syl φNFN:VBaseRkBaseRyVzVNkWy+Wz=kRNy+RNz
71 21 68 70 mpbir2and φNF