| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgseisen.1 |
|
| 2 |
|
lgseisen.2 |
|
| 3 |
|
lgseisen.3 |
|
| 4 |
2
|
eldifad |
|
| 5 |
|
prmz |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
lgsval3 |
|
| 8 |
6 1 7
|
syl2anc |
|
| 9 |
2
|
gausslemma2dlem0a |
|
| 10 |
|
oddprm |
|
| 11 |
1 10
|
syl |
|
| 12 |
11
|
nnnn0d |
|
| 13 |
9 12
|
nnexpcld |
|
| 14 |
13
|
nnred |
|
| 15 |
|
neg1rr |
|
| 16 |
15
|
a1i |
|
| 17 |
|
neg1ne0 |
|
| 18 |
17
|
a1i |
|
| 19 |
|
fzfid |
|
| 20 |
9
|
nnred |
|
| 21 |
1
|
gausslemma2dlem0a |
|
| 22 |
20 21
|
nndivred |
|
| 23 |
22
|
adantr |
|
| 24 |
|
2re |
|
| 25 |
|
elfznn |
|
| 26 |
25
|
adantl |
|
| 27 |
26
|
nnred |
|
| 28 |
|
remulcl |
|
| 29 |
24 27 28
|
sylancr |
|
| 30 |
23 29
|
remulcld |
|
| 31 |
30
|
flcld |
|
| 32 |
19 31
|
fsumzcl |
|
| 33 |
16 18 32
|
reexpclzd |
|
| 34 |
|
1re |
|
| 35 |
34
|
a1i |
|
| 36 |
21
|
nnrpd |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
1 2 3 37 38 39 40 41 42
|
lgseisenlem4 |
|
| 44 |
|
modadd1 |
|
| 45 |
14 33 35 36 43 44
|
syl221anc |
|
| 46 |
|
peano2re |
|
| 47 |
33 46
|
syl |
|
| 48 |
|
df-neg |
|
| 49 |
|
neg1cn |
|
| 50 |
|
absexpz |
|
| 51 |
49 17 32 50
|
mp3an12i |
|
| 52 |
|
ax-1cn |
|
| 53 |
52
|
absnegi |
|
| 54 |
|
abs1 |
|
| 55 |
53 54
|
eqtri |
|
| 56 |
55
|
oveq1i |
|
| 57 |
|
1exp |
|
| 58 |
32 57
|
syl |
|
| 59 |
56 58
|
eqtrid |
|
| 60 |
51 59
|
eqtrd |
|
| 61 |
|
1le1 |
|
| 62 |
60 61
|
eqbrtrdi |
|
| 63 |
|
absle |
|
| 64 |
33 34 63
|
sylancl |
|
| 65 |
62 64
|
mpbid |
|
| 66 |
65
|
simpld |
|
| 67 |
48 66
|
eqbrtrrid |
|
| 68 |
|
0red |
|
| 69 |
68 35 33
|
lesubaddd |
|
| 70 |
67 69
|
mpbid |
|
| 71 |
21
|
nnred |
|
| 72 |
|
peano2rem |
|
| 73 |
71 72
|
syl |
|
| 74 |
65
|
simprd |
|
| 75 |
|
df-2 |
|
| 76 |
24
|
a1i |
|
| 77 |
1
|
eldifad |
|
| 78 |
|
prmuz2 |
|
| 79 |
|
eluzle |
|
| 80 |
77 78 79
|
3syl |
|
| 81 |
|
eldifsni |
|
| 82 |
1 81
|
syl |
|
| 83 |
76 71 80 82
|
leneltd |
|
| 84 |
75 83
|
eqbrtrrid |
|
| 85 |
35 35 71
|
ltaddsubd |
|
| 86 |
84 85
|
mpbid |
|
| 87 |
33 35 73 74 86
|
lelttrd |
|
| 88 |
33 35 71
|
ltaddsubd |
|
| 89 |
87 88
|
mpbird |
|
| 90 |
|
modid |
|
| 91 |
47 36 70 89 90
|
syl22anc |
|
| 92 |
45 91
|
eqtrd |
|
| 93 |
92
|
oveq1d |
|
| 94 |
33
|
recnd |
|
| 95 |
|
pncan |
|
| 96 |
94 52 95
|
sylancl |
|
| 97 |
93 96
|
eqtrd |
|
| 98 |
8 97
|
eqtrd |
|