Metamath Proof Explorer


Theorem lgsquad2lem1

Description: Lemma for lgsquad2 . (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Hypotheses lgsquad2.1 φM
lgsquad2.2 φ¬2M
lgsquad2.3 φN
lgsquad2.4 φ¬2N
lgsquad2.5 φMgcdN=1
lgsquad2lem1.a φA
lgsquad2lem1.b φB
lgsquad2lem1.m φAB=M
lgsquad2lem1.1 φA/LNN/LA=1A12N12
lgsquad2lem1.2 φB/LNN/LB=1B12N12
Assertion lgsquad2lem1 φM/LNN/LM=1M12N12

Proof

Step Hyp Ref Expression
1 lgsquad2.1 φM
2 lgsquad2.2 φ¬2M
3 lgsquad2.3 φN
4 lgsquad2.4 φ¬2N
5 lgsquad2.5 φMgcdN=1
6 lgsquad2lem1.a φA
7 lgsquad2lem1.b φB
8 lgsquad2lem1.m φAB=M
9 lgsquad2lem1.1 φA/LNN/LA=1A12N12
10 lgsquad2lem1.2 φB/LNN/LB=1B12N12
11 6 nnzd φA
12 11 zcnd φA
13 ax-1cn 1
14 npcan A1A-1+1=A
15 12 13 14 sylancl φA-1+1=A
16 7 nnzd φB
17 16 zcnd φB
18 npcan B1B-1+1=B
19 17 13 18 sylancl φB-1+1=B
20 15 19 oveq12d φA-1+1B-1+1=AB
21 peano2zm AA1
22 11 21 syl φA1
23 22 zcnd φA1
24 13 a1i φ1
25 peano2zm BB1
26 16 25 syl φB1
27 26 zcnd φB1
28 23 24 27 24 muladdd φA-1+1B-1+1=A1B1+11+A11+B11
29 1t1e1 11=1
30 29 a1i φ11=1
31 30 oveq2d φA1B1+11=A1B1+1
32 23 mulridd φA11=A1
33 27 mulridd φB11=B1
34 32 33 oveq12d φA11+B11=A1+B-1
35 31 34 oveq12d φA1B1+11+A11+B11=A1B1+1+A1+B1
36 28 35 eqtrd φA-1+1B-1+1=A1B1+1+A1+B1
37 20 36 eqtr3d φAB=A1B1+1+A1+B1
38 8 37 eqtr3d φM=A1B1+1+A1+B1
39 38 oveq1d φM1=A1B1+1+A1+B-1-1
40 23 27 mulcld φA1B1
41 addcl A1B11A1B1+1
42 40 13 41 sylancl φA1B1+1
43 23 27 addcld φA1+B-1
44 42 43 24 addsubd φA1B1+1+A1+B-1-1=A1B1+1-1+A1+B1
45 pncan A1B11A1B1+1-1=A1B1
46 40 13 45 sylancl φA1B1+1-1=A1B1
47 46 oveq1d φA1B1+1-1+A1+B1=A1B1+A1+B1
48 39 44 47 3eqtrd φM1=A1B1+A1+B1
49 48 oveq1d φM12=A1B1+A1+B12
50 2cnd φ2
51 2ne0 20
52 51 a1i φ20
53 40 43 50 52 divdird φA1B1+A1+B12=A1B12+A1+B-12
54 23 27 50 52 divassd φA1B12=A1B12
55 23 50 52 divcan2d φ2A12=A1
56 55 oveq1d φ2A12B12=A1B12
57 dvdsmul1 ABAAB
58 11 16 57 syl2anc φAAB
59 58 8 breqtrd φAM
60 2z 2
61 1 nnzd φM
62 dvdstr 2AM2AAM2M
63 60 11 61 62 mp3an2i φ2AAM2M
64 59 63 mpan2d φ2A2M
65 2 64 mtod φ¬2A
66 1zzd φ1
67 2prm 2
68 nprmdvds1 2¬21
69 67 68 mp1i φ¬21
70 omoe A¬2A1¬212A1
71 11 65 66 69 70 syl22anc φ2A1
72 dvdsval2 220A12A1A12
73 60 52 22 72 mp3an2i φ2A1A12
74 71 73 mpbid φA12
75 74 zcnd φA12
76 dvdsmul2 ABBAB
77 11 16 76 syl2anc φBAB
78 77 8 breqtrd φBM
79 dvdstr 2BM2BBM2M
80 60 16 61 79 mp3an2i φ2BBM2M
81 78 80 mpan2d φ2B2M
82 2 81 mtod φ¬2B
83 omoe B¬2B1¬212B1
84 16 82 66 69 83 syl22anc φ2B1
85 dvdsval2 220B12B1B12
86 60 52 26 85 mp3an2i φ2B1B12
87 84 86 mpbid φB12
88 87 zcnd φB12
89 50 75 88 mulassd φ2A12B12=2A12B12
90 54 56 89 3eqtr2d φA1B12=2A12B12
91 23 27 50 52 divdird φA1+B-12=A12+B12
92 90 91 oveq12d φA1B12+A1+B-12=2A12B12+A12+B12
93 49 53 92 3eqtrd φM12=2A12B12+A12+B12
94 93 oveq1d φM12N12=2A12B12+A12+B12N12
95 60 a1i φ2
96 74 87 zmulcld φA12B12
97 95 96 zmulcld φ2A12B12
98 97 zcnd φ2A12B12
99 74 87 zaddcld φA12+B12
100 99 zcnd φA12+B12
101 3 nnzd φN
102 omoe N¬2N1¬212N1
103 101 4 66 69 102 syl22anc φ2N1
104 peano2zm NN1
105 101 104 syl φN1
106 dvdsval2 220N12N1N12
107 60 52 105 106 mp3an2i φ2N1N12
108 103 107 mpbid φN12
109 108 zcnd φN12
110 98 100 109 adddird φ2A12B12+A12+B12N12=2A12B12N12+A12+B12N12
111 96 zcnd φA12B12
112 50 111 109 mulassd φ2A12B12N12=2A12B12N12
113 112 oveq1d φ2A12B12N12+A12+B12N12=2A12B12N12+A12+B12N12
114 94 110 113 3eqtrd φM12N12=2A12B12N12+A12+B12N12
115 114 oveq2d φ1M12N12=12A12B12N12+A12+B12N12
116 neg1cn 1
117 116 a1i φ1
118 neg1ne0 10
119 118 a1i φ10
120 96 108 zmulcld φA12B12N12
121 95 120 zmulcld φ2A12B12N12
122 99 108 zmulcld φA12+B12N12
123 expaddz 1102A12B12N12A12+B12N1212A12B12N12+A12+B12N12=12A12B12N121A12+B12N12
124 117 119 121 122 123 syl22anc φ12A12B12N12+A12+B12N12=12A12B12N121A12+B12N12
125 expmulz 1102A12B12N1212A12B12N12=-12A12B12N12
126 117 119 95 120 125 syl22anc φ12A12B12N12=-12A12B12N12
127 neg1sqe1 12=1
128 127 oveq1i -12A12B12N12=1A12B12N12
129 1exp A12B12N121A12B12N12=1
130 120 129 syl φ1A12B12N12=1
131 128 130 eqtrid φ-12A12B12N12=1
132 126 131 eqtrd φ12A12B12N12=1
133 132 oveq1d φ12A12B12N121A12+B12N12=11A12+B12N12
134 124 133 eqtrd φ12A12B12N12+A12+B12N12=11A12+B12N12
135 117 119 122 expclzd φ1A12+B12N12
136 135 mullidd φ11A12+B12N12=1A12+B12N12
137 75 88 109 adddird φA12+B12N12=A12N12+B12N12
138 137 oveq2d φ1A12+B12N12=1A12N12+B12N12
139 136 138 eqtrd φ11A12+B12N12=1A12N12+B12N12
140 115 134 139 3eqtrd φ1M12N12=1A12N12+B12N12
141 9 10 oveq12d φA/LNN/LAB/LNN/LB=1A12N121B12N12
142 74 108 zmulcld φA12N12
143 87 108 zmulcld φB12N12
144 expaddz 110A12N12B12N121A12N12+B12N12=1A12N121B12N12
145 117 119 142 143 144 syl22anc φ1A12N12+B12N12=1A12N121B12N12
146 141 145 eqtr4d φA/LNN/LAB/LNN/LB=1A12N12+B12N12
147 lgscl ANA/LN
148 11 101 147 syl2anc φA/LN
149 148 zcnd φA/LN
150 lgscl BNB/LN
151 16 101 150 syl2anc φB/LN
152 151 zcnd φB/LN
153 lgscl NAN/LA
154 101 11 153 syl2anc φN/LA
155 154 zcnd φN/LA
156 lgscl NBN/LB
157 101 16 156 syl2anc φN/LB
158 157 zcnd φN/LB
159 149 152 155 158 mul4d φA/LNB/LNN/LAN/LB=A/LNN/LAB/LNN/LB
160 6 nnne0d φA0
161 7 nnne0d φB0
162 lgsdir ABNA0B0AB/LN=A/LNB/LN
163 11 16 101 160 161 162 syl32anc φAB/LN=A/LNB/LN
164 8 oveq1d φAB/LN=M/LN
165 163 164 eqtr3d φA/LNB/LN=M/LN
166 lgsdi NABA0B0N/LAB=N/LAN/LB
167 101 11 16 160 161 166 syl32anc φN/LAB=N/LAN/LB
168 8 oveq2d φN/LAB=N/LM
169 167 168 eqtr3d φN/LAN/LB=N/LM
170 165 169 oveq12d φA/LNB/LNN/LAN/LB=M/LNN/LM
171 159 170 eqtr3d φA/LNN/LAB/LNN/LB=M/LNN/LM
172 140 146 171 3eqtr2rd φM/LNN/LM=1M12N12