Metamath Proof Explorer


Theorem limsupre

Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypotheses limsupre.1 φ B
limsupre.2 φ sup B * < = +∞
limsupre.f φ F : B
limsupre.bnd φ b k j B k j F j b
Assertion limsupre φ lim sup F

Proof

Step Hyp Ref Expression
1 limsupre.1 φ B
2 limsupre.2 φ sup B * < = +∞
3 limsupre.f φ F : B
4 limsupre.bnd φ b k j B k j F j b
5 mnfxr −∞ *
6 5 a1i φ b k j B k j F j b −∞ *
7 renegcl b b
8 7 rexrd b b *
9 8 ad2antlr φ b k j B k j F j b b *
10 reex V
11 10 a1i φ V
12 11 1 ssexd φ B V
13 3 12 fexd φ F V
14 limsupcl F V lim sup F *
15 13 14 syl φ lim sup F *
16 15 ad2antrr φ b k j B k j F j b lim sup F *
17 7 mnfltd b −∞ < b
18 17 ad2antlr φ b k j B k j F j b −∞ < b
19 1 ad2antrr φ b k j B k j F j b B
20 ressxr *
21 20 a1i φ *
22 3 21 fssd φ F : B *
23 22 ad2antrr φ b k j B k j F j b F : B *
24 2 ad2antrr φ b k j B k j F j b sup B * < = +∞
25 simpr φ b k j B k j F j b k j B k j F j b
26 nfv k φ b
27 nfre1 k k j B k j F j b
28 26 27 nfan k φ b k j B k j F j b
29 nfv j φ b
30 nfv j k
31 nfra1 j j B k j F j b
32 29 30 31 nf3an j φ b k j B k j F j b
33 simp13 φ b k j B k j F j b j B k j j B k j F j b
34 simp2 φ b k j B k j F j b j B k j j B
35 simp3 φ b k j B k j F j b j B k j k j
36 rspa j B k j F j b j B k j F j b
37 36 imp j B k j F j b j B k j F j b
38 33 34 35 37 syl21anc φ b k j B k j F j b j B k j F j b
39 simp11l φ b k j B k j F j b j B k j φ
40 3 ffvelrnda φ j B F j
41 39 34 40 syl2anc φ b k j B k j F j b j B k j F j
42 simp11r φ b k j B k j F j b j B k j b
43 41 42 absled φ b k j B k j F j b j B k j F j b b F j F j b
44 38 43 mpbid φ b k j B k j F j b j B k j b F j F j b
45 44 simpld φ b k j B k j F j b j B k j b F j
46 45 3exp φ b k j B k j F j b j B k j b F j
47 32 46 ralrimi φ b k j B k j F j b j B k j b F j
48 47 3exp φ b k j B k j F j b j B k j b F j
49 48 adantr φ b k j B k j F j b k j B k j F j b j B k j b F j
50 28 49 reximdai φ b k j B k j F j b k j B k j F j b k j B k j b F j
51 25 50 mpd φ b k j B k j F j b k j B k j b F j
52 breq2 i = j h i h j
53 fveq2 i = j F i = F j
54 53 breq2d i = j b F i b F j
55 52 54 imbi12d i = j h i b F i h j b F j
56 55 cbvralvw i B h i b F i j B h j b F j
57 breq1 h = k h j k j
58 57 imbi1d h = k h j b F j k j b F j
59 58 ralbidv h = k j B h j b F j j B k j b F j
60 56 59 syl5bb h = k i B h i b F i j B k j b F j
61 60 cbvrexvw h i B h i b F i k j B k j b F j
62 51 61 sylibr φ b k j B k j F j b h i B h i b F i
63 19 23 9 24 62 limsupbnd2 φ b k j B k j F j b b lim sup F
64 6 9 16 18 63 xrltletrd φ b k j B k j F j b −∞ < lim sup F
65 64 4 r19.29a φ −∞ < lim sup F
66 rexr b b *
67 66 ad2antlr φ b k j B k j F j b b *
68 pnfxr +∞ *
69 68 a1i φ b k j B k j F j b +∞ *
70 44 simprd φ b k j B k j F j b j B k j F j b
71 70 3exp φ b k j B k j F j b j B k j F j b
72 32 71 ralrimi φ b k j B k j F j b j B k j F j b
73 72 3exp φ b k j B k j F j b j B k j F j b
74 73 adantr φ b k j B k j F j b k j B k j F j b j B k j F j b
75 28 74 reximdai φ b k j B k j F j b k j B k j F j b k j B k j F j b
76 25 75 mpd φ b k j B k j F j b k j B k j F j b
77 53 breq1d i = j F i b F j b
78 52 77 imbi12d i = j h i F i b h j F j b
79 78 cbvralvw i B h i F i b j B h j F j b
80 57 imbi1d h = k h j F j b k j F j b
81 80 ralbidv h = k j B h j F j b j B k j F j b
82 79 81 syl5bb h = k i B h i F i b j B k j F j b
83 82 cbvrexvw h i B h i F i b k j B k j F j b
84 76 83 sylibr φ b k j B k j F j b h i B h i F i b
85 19 23 67 84 limsupbnd1 φ b k j B k j F j b lim sup F b
86 ltpnf b b < +∞
87 86 ad2antlr φ b k j B k j F j b b < +∞
88 16 67 69 85 87 xrlelttrd φ b k j B k j F j b lim sup F < +∞
89 88 4 r19.29a φ lim sup F < +∞
90 xrrebnd lim sup F * lim sup F −∞ < lim sup F lim sup F < +∞
91 15 90 syl φ lim sup F −∞ < lim sup F lim sup F < +∞
92 65 89 91 mpbir2and φ lim sup F