Metamath Proof Explorer


Theorem limcresiooub

Description: The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcresiooub.f φ F : A
limcresiooub.b φ B *
limcresiooub.c φ C
limcresiooub.bltc φ B < C
limcresiooub.bcss φ B C A
limcresiooub.d φ D *
limcresiooub.cled φ D B
Assertion limcresiooub φ F B C lim C = F D C lim C

Proof

Step Hyp Ref Expression
1 limcresiooub.f φ F : A
2 limcresiooub.b φ B *
3 limcresiooub.c φ C
4 limcresiooub.bltc φ B < C
5 limcresiooub.bcss φ B C A
6 limcresiooub.d φ D *
7 limcresiooub.cled φ D B
8 iooss1 D * D B B C D C
9 6 7 8 syl2anc φ B C D C
10 9 resabs1d φ F D C B C = F B C
11 10 eqcomd φ F B C = F D C B C
12 11 oveq1d φ F B C lim C = F D C B C lim C
13 fresin F : A F D C : A D C
14 1 13 syl φ F D C : A D C
15 5 9 ssind φ B C A D C
16 inss2 A D C D C
17 ioosscn D C
18 16 17 sstri A D C
19 18 a1i φ A D C
20 eqid TopOpen fld = TopOpen fld
21 eqid TopOpen fld 𝑡 A D C C = TopOpen fld 𝑡 A D C C
22 3 rexrd φ C *
23 ubioc1 B * C * B < C C B C
24 2 22 4 23 syl3anc φ C B C
25 ioounsn B * C * B < C B C C = B C
26 2 22 4 25 syl3anc φ B C C = B C
27 26 fveq2d φ int TopOpen fld 𝑡 A D C C B C C = int TopOpen fld 𝑡 A D C C B C
28 20 cnfldtop TopOpen fld Top
29 ovex D C V
30 29 inex2 A D C V
31 snex C V
32 30 31 unex A D C C V
33 resttop TopOpen fld Top A D C C V TopOpen fld 𝑡 A D C C Top
34 28 32 33 mp2an TopOpen fld 𝑡 A D C C Top
35 34 a1i φ TopOpen fld 𝑡 A D C C Top
36 pnfxr +∞ *
37 36 a1i φ +∞ *
38 2 xrleidd φ B B
39 3 ltpnfd φ C < +∞
40 iocssioo B * +∞ * B B C < +∞ B C B +∞
41 2 37 38 39 40 syl22anc φ B C B +∞
42 simpr φ x = C x = C
43 snidg C C C
44 elun2 C C C A D C C
45 3 43 44 3syl φ C A D C C
46 45 adantr φ x = C C A D C C
47 42 46 eqeltrd φ x = C x A D C C
48 47 adantlr φ x B C x = C x A D C C
49 simpll φ x B C ¬ x = C φ
50 2 adantr φ x B C B *
51 50 adantr φ x B C ¬ x = C B *
52 22 adantr φ x B C C *
53 52 adantr φ x B C ¬ x = C C *
54 iocssre B * C B C
55 2 3 54 syl2anc φ B C
56 55 sselda φ x B C x
57 56 adantr φ x B C ¬ x = C x
58 simpr φ x B C x B C
59 iocgtlb B * C * x B C B < x
60 50 52 58 59 syl3anc φ x B C B < x
61 60 adantr φ x B C ¬ x = C B < x
62 3 ad2antrr φ x B C ¬ x = C C
63 iocleub B * C * x B C x C
64 50 52 58 63 syl3anc φ x B C x C
65 64 adantr φ x B C ¬ x = C x C
66 neqne ¬ x = C x C
67 66 adantl φ x B C ¬ x = C x C
68 67 necomd φ x B C ¬ x = C C x
69 57 62 65 68 leneltd φ x B C ¬ x = C x < C
70 51 53 57 61 69 eliood φ x B C ¬ x = C x B C
71 15 sselda φ x B C x A D C
72 elun1 x A D C x A D C C
73 71 72 syl φ x B C x A D C C
74 49 70 73 syl2anc φ x B C ¬ x = C x A D C C
75 48 74 pm2.61dan φ x B C x A D C C
76 75 ralrimiva φ x B C x A D C C
77 dfss3 B C A D C C x B C x A D C C
78 76 77 sylibr φ B C A D C C
79 41 78 ssind φ B C B +∞ A D C C
80 79 sseld φ x B C x B +∞ A D C C
81 24 adantr φ x = C C B C
82 42 81 eqeltrd φ x = C x B C
83 82 adantlr φ x B +∞ A D C C x = C x B C
84 ioossioc B C B C
85 2 ad2antrr φ x B +∞ A D C C ¬ x = C B *
86 22 ad2antrr φ x B +∞ A D C C ¬ x = C C *
87 elinel1 x B +∞ A D C C x B +∞
88 87 elioored x B +∞ A D C C x
89 88 ad2antlr φ x B +∞ A D C C ¬ x = C x
90 36 a1i φ x B +∞ A D C C ¬ x = C +∞ *
91 87 ad2antlr φ x B +∞ A D C C ¬ x = C x B +∞
92 ioogtlb B * +∞ * x B +∞ B < x
93 85 90 91 92 syl3anc φ x B +∞ A D C C ¬ x = C B < x
94 6 ad2antrr φ x B +∞ A D C C ¬ x = C D *
95 elinel2 x B +∞ A D C C x A D C C
96 id ¬ x = C ¬ x = C
97 velsn x C x = C
98 96 97 sylnibr ¬ x = C ¬ x C
99 elunnel2 x A D C C ¬ x C x A D C
100 95 98 99 syl2an x B +∞ A D C C ¬ x = C x A D C
101 16 100 sseldi x B +∞ A D C C ¬ x = C x D C
102 101 adantll φ x B +∞ A D C C ¬ x = C x D C
103 iooltub D * C * x D C x < C
104 94 86 102 103 syl3anc φ x B +∞ A D C C ¬ x = C x < C
105 85 86 89 93 104 eliood φ x B +∞ A D C C ¬ x = C x B C
106 84 105 sseldi φ x B +∞ A D C C ¬ x = C x B C
107 83 106 pm2.61dan φ x B +∞ A D C C x B C
108 107 ex φ x B +∞ A D C C x B C
109 80 108 impbid φ x B C x B +∞ A D C C
110 109 eqrdv φ B C = B +∞ A D C C
111 retop topGen ran . Top
112 111 a1i φ topGen ran . Top
113 32 a1i φ A D C C V
114 iooretop B +∞ topGen ran .
115 114 a1i φ B +∞ topGen ran .
116 elrestr topGen ran . Top A D C C V B +∞ topGen ran . B +∞ A D C C topGen ran . 𝑡 A D C C
117 112 113 115 116 syl3anc φ B +∞ A D C C topGen ran . 𝑡 A D C C
118 110 117 eqeltrd φ B C topGen ran . 𝑡 A D C C
119 20 tgioo2 topGen ran . = TopOpen fld 𝑡
120 119 oveq1i topGen ran . 𝑡 A D C C = TopOpen fld 𝑡 𝑡 A D C C
121 28 a1i φ TopOpen fld Top
122 ioossre D C
123 16 122 sstri A D C
124 123 a1i φ A D C
125 3 snssd φ C
126 124 125 unssd φ A D C C
127 reex V
128 127 a1i φ V
129 restabs TopOpen fld Top A D C C V TopOpen fld 𝑡 𝑡 A D C C = TopOpen fld 𝑡 A D C C
130 121 126 128 129 syl3anc φ TopOpen fld 𝑡 𝑡 A D C C = TopOpen fld 𝑡 A D C C
131 120 130 syl5eq φ topGen ran . 𝑡 A D C C = TopOpen fld 𝑡 A D C C
132 118 131 eleqtrd φ B C TopOpen fld 𝑡 A D C C
133 isopn3i TopOpen fld 𝑡 A D C C Top B C TopOpen fld 𝑡 A D C C int TopOpen fld 𝑡 A D C C B C = B C
134 35 132 133 syl2anc φ int TopOpen fld 𝑡 A D C C B C = B C
135 27 134 eqtr2d φ B C = int TopOpen fld 𝑡 A D C C B C C
136 24 135 eleqtrd φ C int TopOpen fld 𝑡 A D C C B C C
137 14 15 19 20 21 136 limcres φ F D C B C lim C = F D C lim C
138 12 137 eqtrd φ F B C lim C = F D C lim C