Step |
Hyp |
Ref |
Expression |
1 |
|
limcresiooub.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
limcresiooub.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
limcresiooub.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
limcresiooub.bltc |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
5 |
|
limcresiooub.bcss |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ 𝐴 ) |
6 |
|
limcresiooub.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
7 |
|
limcresiooub.cled |
⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
8 |
|
iooss1 |
⊢ ( ( 𝐷 ∈ ℝ* ∧ 𝐷 ≤ 𝐵 ) → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐷 (,) 𝐶 ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐷 (,) 𝐶 ) ) |
10 |
9
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) = ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) = ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐶 ) = ( ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐶 ) ) |
13 |
|
fresin |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) : ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⟶ ℂ ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) : ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⟶ ℂ ) |
15 |
5 9
|
ssind |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ) |
16 |
|
inss2 |
⊢ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ( 𝐷 (,) 𝐶 ) |
17 |
|
ioosscn |
⊢ ( 𝐷 (,) 𝐶 ) ⊆ ℂ |
18 |
16 17
|
sstri |
⊢ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ℂ |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ℂ ) |
20 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
21 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
22 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
23 |
|
ubioc1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ( 𝐵 (,] 𝐶 ) ) |
24 |
2 22 4 23
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 (,] 𝐶 ) ) |
25 |
|
ioounsn |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶 ) → ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) = ( 𝐵 (,] 𝐶 ) ) |
26 |
2 22 4 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) = ( 𝐵 (,] 𝐶 ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( 𝐵 (,] 𝐶 ) ) ) |
28 |
20
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
29 |
|
ovex |
⊢ ( 𝐷 (,) 𝐶 ) ∈ V |
30 |
29
|
inex2 |
⊢ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∈ V |
31 |
|
snex |
⊢ { 𝐶 } ∈ V |
32 |
30 31
|
unex |
⊢ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∈ V |
33 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ Top ) |
34 |
28 32 33
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ Top |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ Top ) |
36 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
37 |
36
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
38 |
2
|
xrleidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
39 |
3
|
ltpnfd |
⊢ ( 𝜑 → 𝐶 < +∞ ) |
40 |
|
iocssioo |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝐵 ≤ 𝐵 ∧ 𝐶 < +∞ ) ) → ( 𝐵 (,] 𝐶 ) ⊆ ( 𝐵 (,) +∞ ) ) |
41 |
2 37 38 39 40
|
syl22anc |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ⊆ ( 𝐵 (,) +∞ ) ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) |
43 |
|
snidg |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ { 𝐶 } ) |
44 |
|
elun2 |
⊢ ( 𝐶 ∈ { 𝐶 } → 𝐶 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
45 |
3 43 44
|
3syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐶 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
47 |
42 46
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
48 |
47
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ 𝑥 = 𝐶 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
49 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝜑 ) |
50 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐵 ∈ ℝ* ) |
52 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐶 ∈ ℝ* ) |
54 |
|
iocssre |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( 𝐵 (,] 𝐶 ) ⊆ ℝ ) |
55 |
2 3 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ⊆ ℝ ) |
56 |
55
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ℝ ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ℝ ) |
58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
59 |
|
iocgtlb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 < 𝑥 ) |
60 |
50 52 58 59
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 < 𝑥 ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐵 < 𝑥 ) |
62 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐶 ∈ ℝ ) |
63 |
|
iocleub |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
64 |
50 52 58 63
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ≤ 𝐶 ) |
66 |
|
neqne |
⊢ ( ¬ 𝑥 = 𝐶 → 𝑥 ≠ 𝐶 ) |
67 |
66
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ≠ 𝐶 ) |
68 |
67
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐶 ≠ 𝑥 ) |
69 |
57 62 65 68
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 < 𝐶 ) |
70 |
51 53 57 61 69
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
71 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ) |
72 |
|
elun1 |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
73 |
71 72
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
74 |
49 70 73
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
75 |
48 74
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
76 |
75
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
77 |
|
dfss3 |
⊢ ( ( 𝐵 (,] 𝐶 ) ⊆ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ↔ ∀ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
78 |
76 77
|
sylibr |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ⊆ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
79 |
41 78
|
ssind |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ⊆ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
80 |
79
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) → 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ) |
81 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐶 ∈ ( 𝐵 (,] 𝐶 ) ) |
82 |
42 81
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
83 |
82
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
84 |
|
ioossioc |
⊢ ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 (,] 𝐶 ) |
85 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐵 ∈ ℝ* ) |
86 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐶 ∈ ℝ* ) |
87 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) → 𝑥 ∈ ( 𝐵 (,) +∞ ) ) |
88 |
87
|
elioored |
⊢ ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) → 𝑥 ∈ ℝ ) |
89 |
88
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ℝ ) |
90 |
36
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → +∞ ∈ ℝ* ) |
91 |
87
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,) +∞ ) ) |
92 |
|
ioogtlb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,) +∞ ) ) → 𝐵 < 𝑥 ) |
93 |
85 90 91 92
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐵 < 𝑥 ) |
94 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐷 ∈ ℝ* ) |
95 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
96 |
|
id |
⊢ ( ¬ 𝑥 = 𝐶 → ¬ 𝑥 = 𝐶 ) |
97 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐶 } ↔ 𝑥 = 𝐶 ) |
98 |
96 97
|
sylnibr |
⊢ ( ¬ 𝑥 = 𝐶 → ¬ 𝑥 ∈ { 𝐶 } ) |
99 |
|
elunnel2 |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∧ ¬ 𝑥 ∈ { 𝐶 } ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ) |
100 |
95 98 99
|
syl2an |
⊢ ( ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ) |
101 |
16 100
|
sselid |
⊢ ( ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐷 (,) 𝐶 ) ) |
102 |
101
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐷 (,) 𝐶 ) ) |
103 |
|
iooltub |
⊢ ( ( 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐷 (,) 𝐶 ) ) → 𝑥 < 𝐶 ) |
104 |
94 86 102 103
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 < 𝐶 ) |
105 |
85 86 89 93 104
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
106 |
84 105
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
107 |
83 106
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
108 |
107
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ) |
109 |
80 108
|
impbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ↔ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ) |
110 |
109
|
eqrdv |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) = ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
111 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
112 |
111
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
113 |
32
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∈ V ) |
114 |
|
iooretop |
⊢ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
115 |
114
|
a1i |
⊢ ( 𝜑 → ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) |
116 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∈ V ∧ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
117 |
112 113 115 116
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
118 |
110 117
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
119 |
20
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
120 |
119
|
oveq1i |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
121 |
28
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
122 |
|
ioossre |
⊢ ( 𝐷 (,) 𝐶 ) ⊆ ℝ |
123 |
16 122
|
sstri |
⊢ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ℝ |
124 |
123
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ℝ ) |
125 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐶 } ⊆ ℝ ) |
126 |
124 125
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ⊆ ℝ ) |
127 |
|
reex |
⊢ ℝ ∈ V |
128 |
127
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
129 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
130 |
121 126 128 129
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
131 |
120 130
|
syl5eq |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
132 |
118 131
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
133 |
|
isopn3i |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ Top ∧ ( 𝐵 (,] 𝐶 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) |
134 |
35 132 133
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) |
135 |
27 134
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) ) ) |
136 |
24 135
|
eleqtrd |
⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) ) ) |
137 |
14 15 19 20 21 136
|
limcres |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) limℂ 𝐶 ) ) |
138 |
12 137
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) limℂ 𝐶 ) ) |