| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcresiooub.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 2 |
|
limcresiooub.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
limcresiooub.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
limcresiooub.bltc |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
| 5 |
|
limcresiooub.bcss |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ 𝐴 ) |
| 6 |
|
limcresiooub.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 7 |
|
limcresiooub.cled |
⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
| 8 |
|
iooss1 |
⊢ ( ( 𝐷 ∈ ℝ* ∧ 𝐷 ≤ 𝐵 ) → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐷 (,) 𝐶 ) ) |
| 9 |
6 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐷 (,) 𝐶 ) ) |
| 10 |
9
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) = ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) = ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐶 ) = ( ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐶 ) ) |
| 13 |
|
fresin |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) : ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⟶ ℂ ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) : ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⟶ ℂ ) |
| 15 |
5 9
|
ssind |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ) |
| 16 |
|
inss2 |
⊢ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ( 𝐷 (,) 𝐶 ) |
| 17 |
|
ioosscn |
⊢ ( 𝐷 (,) 𝐶 ) ⊆ ℂ |
| 18 |
16 17
|
sstri |
⊢ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ℂ |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ℂ ) |
| 20 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 21 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 22 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 23 |
|
ubioc1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶 ) → 𝐶 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 24 |
2 22 4 23
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 25 |
|
ioounsn |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶 ) → ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) = ( 𝐵 (,] 𝐶 ) ) |
| 26 |
2 22 4 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) = ( 𝐵 (,] 𝐶 ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( 𝐵 (,] 𝐶 ) ) ) |
| 28 |
20
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 29 |
|
ovex |
⊢ ( 𝐷 (,) 𝐶 ) ∈ V |
| 30 |
29
|
inex2 |
⊢ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∈ V |
| 31 |
|
snex |
⊢ { 𝐶 } ∈ V |
| 32 |
30 31
|
unex |
⊢ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∈ V |
| 33 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ Top ) |
| 34 |
28 32 33
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ Top |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ Top ) |
| 36 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 38 |
2
|
xrleidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
| 39 |
3
|
ltpnfd |
⊢ ( 𝜑 → 𝐶 < +∞ ) |
| 40 |
|
iocssioo |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝐵 ≤ 𝐵 ∧ 𝐶 < +∞ ) ) → ( 𝐵 (,] 𝐶 ) ⊆ ( 𝐵 (,) +∞ ) ) |
| 41 |
2 37 38 39 40
|
syl22anc |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ⊆ ( 𝐵 (,) +∞ ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) |
| 43 |
|
snidg |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ { 𝐶 } ) |
| 44 |
|
elun2 |
⊢ ( 𝐶 ∈ { 𝐶 } → 𝐶 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 45 |
3 43 44
|
3syl |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐶 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 47 |
42 46
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 48 |
47
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ 𝑥 = 𝐶 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 49 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝜑 ) |
| 50 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐵 ∈ ℝ* ) |
| 52 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐶 ∈ ℝ* ) |
| 54 |
|
iocssre |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( 𝐵 (,] 𝐶 ) ⊆ ℝ ) |
| 55 |
2 3 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ⊆ ℝ ) |
| 56 |
55
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ℝ ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ℝ ) |
| 58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 59 |
|
iocgtlb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 < 𝑥 ) |
| 60 |
50 52 58 59
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 < 𝑥 ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐵 < 𝑥 ) |
| 62 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐶 ∈ ℝ ) |
| 63 |
|
iocleub |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
| 64 |
50 52 58 63
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ≤ 𝐶 ) |
| 66 |
|
neqne |
⊢ ( ¬ 𝑥 = 𝐶 → 𝑥 ≠ 𝐶 ) |
| 67 |
66
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ≠ 𝐶 ) |
| 68 |
67
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐶 ≠ 𝑥 ) |
| 69 |
57 62 65 68
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 < 𝐶 ) |
| 70 |
51 53 57 61 69
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
| 71 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ) |
| 72 |
|
elun1 |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 73 |
71 72
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 74 |
49 70 73
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 75 |
48 74
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 76 |
75
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 77 |
|
dfss3 |
⊢ ( ( 𝐵 (,] 𝐶 ) ⊆ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ↔ ∀ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 78 |
76 77
|
sylibr |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ⊆ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 79 |
41 78
|
ssind |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ⊆ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
| 80 |
79
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) → 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ) |
| 81 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝐶 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 82 |
42 81
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 83 |
82
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 84 |
|
ioossioc |
⊢ ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 (,] 𝐶 ) |
| 85 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐵 ∈ ℝ* ) |
| 86 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐶 ∈ ℝ* ) |
| 87 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) → 𝑥 ∈ ( 𝐵 (,) +∞ ) ) |
| 88 |
87
|
elioored |
⊢ ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) → 𝑥 ∈ ℝ ) |
| 89 |
88
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ℝ ) |
| 90 |
36
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → +∞ ∈ ℝ* ) |
| 91 |
87
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,) +∞ ) ) |
| 92 |
|
ioogtlb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,) +∞ ) ) → 𝐵 < 𝑥 ) |
| 93 |
85 90 91 92
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐵 < 𝑥 ) |
| 94 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝐷 ∈ ℝ* ) |
| 95 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 96 |
|
id |
⊢ ( ¬ 𝑥 = 𝐶 → ¬ 𝑥 = 𝐶 ) |
| 97 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐶 } ↔ 𝑥 = 𝐶 ) |
| 98 |
96 97
|
sylnibr |
⊢ ( ¬ 𝑥 = 𝐶 → ¬ 𝑥 ∈ { 𝐶 } ) |
| 99 |
|
elunnel2 |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∧ ¬ 𝑥 ∈ { 𝐶 } ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ) |
| 100 |
95 98 99
|
syl2an |
⊢ ( ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ) |
| 101 |
16 100
|
sselid |
⊢ ( ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐷 (,) 𝐶 ) ) |
| 102 |
101
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐷 (,) 𝐶 ) ) |
| 103 |
|
iooltub |
⊢ ( ( 𝐷 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐷 (,) 𝐶 ) ) → 𝑥 < 𝐶 ) |
| 104 |
94 86 102 103
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 < 𝐶 ) |
| 105 |
85 86 89 93 104
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
| 106 |
84 105
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ∧ ¬ 𝑥 = 𝐶 ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 107 |
83 106
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 108 |
107
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) ) |
| 109 |
80 108
|
impbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ↔ 𝑥 ∈ ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ) |
| 110 |
109
|
eqrdv |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) = ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
| 111 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 112 |
111
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
| 113 |
32
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∈ V ) |
| 114 |
|
iooretop |
⊢ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
| 115 |
114
|
a1i |
⊢ ( 𝜑 → ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) |
| 116 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ∈ V ∧ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
| 117 |
112 113 115 116
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 (,) +∞ ) ∩ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
| 118 |
110 117
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
| 119 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 120 |
119
|
oveq1i |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) |
| 121 |
28
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 122 |
|
ioossre |
⊢ ( 𝐷 (,) 𝐶 ) ⊆ ℝ |
| 123 |
16 122
|
sstri |
⊢ ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ℝ |
| 124 |
123
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ⊆ ℝ ) |
| 125 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐶 } ⊆ ℝ ) |
| 126 |
124 125
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ⊆ ℝ ) |
| 127 |
|
reex |
⊢ ℝ ∈ V |
| 128 |
127
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 129 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
| 130 |
121 126 128 129
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
| 131 |
120 130
|
eqtrid |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
| 132 |
118 131
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) |
| 133 |
|
isopn3i |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ∈ Top ∧ ( 𝐵 (,] 𝐶 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) |
| 134 |
35 132 133
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) |
| 135 |
27 134
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 (,] 𝐶 ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) ) ) |
| 136 |
24 135
|
eleqtrd |
⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐷 (,) 𝐶 ) ) ∪ { 𝐶 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐶 } ) ) ) |
| 137 |
14 15 19 20 21 136
|
limcres |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) limℂ 𝐶 ) ) |
| 138 |
12 137
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐷 (,) 𝐶 ) ) limℂ 𝐶 ) ) |