| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcresioolb.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 2 |
|
limcresioolb.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
limcresioolb.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 4 |
|
limcresioolb.bltc |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
| 5 |
|
limcresioolb.bcss |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ 𝐴 ) |
| 6 |
|
limcresioolb.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 7 |
|
limcresioolb.cled |
⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
| 8 |
|
iooss2 |
⊢ ( ( 𝐷 ∈ ℝ* ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 (,) 𝐷 ) ) |
| 9 |
6 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 (,) 𝐷 ) ) |
| 10 |
9
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) = ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) = ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐵 ) = ( ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐵 ) ) |
| 13 |
|
fresin |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) : ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⟶ ℂ ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) : ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⟶ ℂ ) |
| 15 |
5 9
|
ssind |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ) |
| 16 |
|
inss2 |
⊢ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ( 𝐵 (,) 𝐷 ) |
| 17 |
|
ioosscn |
⊢ ( 𝐵 (,) 𝐷 ) ⊆ ℂ |
| 18 |
16 17
|
sstri |
⊢ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ℂ |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ℂ ) |
| 20 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 21 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 22 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 23 |
|
lbico1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ( 𝐵 [,) 𝐶 ) ) |
| 24 |
22 3 4 23
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐵 [,) 𝐶 ) ) |
| 25 |
|
snunioo1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶 ) → ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) = ( 𝐵 [,) 𝐶 ) ) |
| 26 |
22 3 4 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) = ( 𝐵 [,) 𝐶 ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( 𝐵 [,) 𝐶 ) ) ) |
| 28 |
20
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 29 |
|
ovex |
⊢ ( 𝐵 (,) 𝐷 ) ∈ V |
| 30 |
29
|
inex2 |
⊢ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∈ V |
| 31 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 32 |
30 31
|
unex |
⊢ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∈ V |
| 33 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ Top ) |
| 34 |
28 32 33
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ Top |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ Top ) |
| 36 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → -∞ ∈ ℝ* ) |
| 38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
| 39 |
|
icossre |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 [,) 𝐶 ) ⊆ ℝ ) |
| 40 |
2 3 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) ⊆ ℝ ) |
| 41 |
40
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ℝ ) |
| 42 |
41
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → -∞ < 𝑥 ) |
| 43 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
| 45 |
|
icoltub |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 < 𝐶 ) |
| 46 |
43 38 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 < 𝐶 ) |
| 47 |
37 38 41 42 46
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ( -∞ (,) 𝐶 ) ) |
| 48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
| 49 |
|
snidg |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ { 𝐵 } ) |
| 50 |
|
elun2 |
⊢ ( 𝐵 ∈ { 𝐵 } → 𝐵 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 51 |
2 49 50
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 53 |
48 52
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 54 |
53
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 55 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝜑 ) |
| 56 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 57 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐶 ∈ ℝ* ) |
| 58 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ ) |
| 59 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 60 |
|
icogelb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝐵 ≤ 𝑥 ) |
| 61 |
43 38 44 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝐵 ≤ 𝑥 ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ≤ 𝑥 ) |
| 63 |
|
neqne |
⊢ ( ¬ 𝑥 = 𝐵 → 𝑥 ≠ 𝐵 ) |
| 64 |
63
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ≠ 𝐵 ) |
| 65 |
59 58 62 64
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 < 𝑥 ) |
| 66 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐶 ) |
| 67 |
56 57 58 65 66
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
| 68 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ) |
| 69 |
|
elun1 |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 70 |
68 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 71 |
55 67 70
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 72 |
54 71
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 73 |
47 72
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
| 74 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ ( 𝐵 [,) 𝐶 ) ) |
| 75 |
48 74
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
| 76 |
75
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
| 77 |
|
ioossico |
⊢ ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) |
| 78 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 79 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐶 ∈ ℝ* ) |
| 80 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) → 𝑥 ∈ ( -∞ (,) 𝐶 ) ) |
| 81 |
80
|
elioored |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) → 𝑥 ∈ ℝ ) |
| 82 |
81
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ ) |
| 83 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐷 ∈ ℝ* ) |
| 84 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 85 |
|
id |
⊢ ( ¬ 𝑥 = 𝐵 → ¬ 𝑥 = 𝐵 ) |
| 86 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) |
| 87 |
85 86
|
sylnibr |
⊢ ( ¬ 𝑥 = 𝐵 → ¬ 𝑥 ∈ { 𝐵 } ) |
| 88 |
|
elunnel2 |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∧ ¬ 𝑥 ∈ { 𝐵 } ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ) |
| 89 |
84 87 88
|
syl2an |
⊢ ( ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ) |
| 90 |
16 89
|
sselid |
⊢ ( ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 (,) 𝐷 ) ) |
| 91 |
90
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 (,) 𝐷 ) ) |
| 92 |
|
ioogtlb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,) 𝐷 ) ) → 𝐵 < 𝑥 ) |
| 93 |
78 83 91 92
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 < 𝑥 ) |
| 94 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → -∞ ∈ ℝ* ) |
| 95 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → 𝐶 ∈ ℝ* ) |
| 96 |
80
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → 𝑥 ∈ ( -∞ (,) 𝐶 ) ) |
| 97 |
|
iooltub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( -∞ (,) 𝐶 ) ) → 𝑥 < 𝐶 ) |
| 98 |
94 95 96 97
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → 𝑥 < 𝐶 ) |
| 99 |
98
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐶 ) |
| 100 |
78 79 82 93 99
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
| 101 |
77 100
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
| 102 |
76 101
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
| 103 |
73 102
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ↔ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ) |
| 104 |
103
|
eqrdv |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) = ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
| 105 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 106 |
105
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
| 107 |
32
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∈ V ) |
| 108 |
|
iooretop |
⊢ ( -∞ (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) |
| 109 |
108
|
a1i |
⊢ ( 𝜑 → ( -∞ (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) ) |
| 110 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∈ V ∧ ( -∞ (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
| 111 |
106 107 109 110
|
syl3anc |
⊢ ( 𝜑 → ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
| 112 |
104 111
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
| 113 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 114 |
113
|
oveq1i |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
| 115 |
28
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 116 |
|
ioossre |
⊢ ( 𝐵 (,) 𝐷 ) ⊆ ℝ |
| 117 |
16 116
|
sstri |
⊢ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ℝ |
| 118 |
117
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ℝ ) |
| 119 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ℝ ) |
| 120 |
118 119
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ⊆ ℝ ) |
| 121 |
|
reex |
⊢ ℝ ∈ V |
| 122 |
121
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 123 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
| 124 |
115 120 122 123
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
| 125 |
114 124
|
eqtrid |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
| 126 |
112 125
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
| 127 |
|
isopn3i |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ Top ∧ ( 𝐵 [,) 𝐶 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( 𝐵 [,) 𝐶 ) ) = ( 𝐵 [,) 𝐶 ) ) |
| 128 |
35 126 127
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( 𝐵 [,) 𝐶 ) ) = ( 𝐵 [,) 𝐶 ) ) |
| 129 |
27 128
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) ) ) |
| 130 |
24 129
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) ) ) |
| 131 |
14 15 19 20 21 130
|
limcres |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐵 ) = ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) limℂ 𝐵 ) ) |
| 132 |
12 131
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐵 ) = ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) limℂ 𝐵 ) ) |