Step |
Hyp |
Ref |
Expression |
1 |
|
limcresiooub.f |
|- ( ph -> F : A --> CC ) |
2 |
|
limcresiooub.b |
|- ( ph -> B e. RR* ) |
3 |
|
limcresiooub.c |
|- ( ph -> C e. RR ) |
4 |
|
limcresiooub.bltc |
|- ( ph -> B < C ) |
5 |
|
limcresiooub.bcss |
|- ( ph -> ( B (,) C ) C_ A ) |
6 |
|
limcresiooub.d |
|- ( ph -> D e. RR* ) |
7 |
|
limcresiooub.cled |
|- ( ph -> D <_ B ) |
8 |
|
iooss1 |
|- ( ( D e. RR* /\ D <_ B ) -> ( B (,) C ) C_ ( D (,) C ) ) |
9 |
6 7 8
|
syl2anc |
|- ( ph -> ( B (,) C ) C_ ( D (,) C ) ) |
10 |
9
|
resabs1d |
|- ( ph -> ( ( F |` ( D (,) C ) ) |` ( B (,) C ) ) = ( F |` ( B (,) C ) ) ) |
11 |
10
|
eqcomd |
|- ( ph -> ( F |` ( B (,) C ) ) = ( ( F |` ( D (,) C ) ) |` ( B (,) C ) ) ) |
12 |
11
|
oveq1d |
|- ( ph -> ( ( F |` ( B (,) C ) ) limCC C ) = ( ( ( F |` ( D (,) C ) ) |` ( B (,) C ) ) limCC C ) ) |
13 |
|
fresin |
|- ( F : A --> CC -> ( F |` ( D (,) C ) ) : ( A i^i ( D (,) C ) ) --> CC ) |
14 |
1 13
|
syl |
|- ( ph -> ( F |` ( D (,) C ) ) : ( A i^i ( D (,) C ) ) --> CC ) |
15 |
5 9
|
ssind |
|- ( ph -> ( B (,) C ) C_ ( A i^i ( D (,) C ) ) ) |
16 |
|
inss2 |
|- ( A i^i ( D (,) C ) ) C_ ( D (,) C ) |
17 |
|
ioosscn |
|- ( D (,) C ) C_ CC |
18 |
16 17
|
sstri |
|- ( A i^i ( D (,) C ) ) C_ CC |
19 |
18
|
a1i |
|- ( ph -> ( A i^i ( D (,) C ) ) C_ CC ) |
20 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
21 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
22 |
3
|
rexrd |
|- ( ph -> C e. RR* ) |
23 |
|
ubioc1 |
|- ( ( B e. RR* /\ C e. RR* /\ B < C ) -> C e. ( B (,] C ) ) |
24 |
2 22 4 23
|
syl3anc |
|- ( ph -> C e. ( B (,] C ) ) |
25 |
|
ioounsn |
|- ( ( B e. RR* /\ C e. RR* /\ B < C ) -> ( ( B (,) C ) u. { C } ) = ( B (,] C ) ) |
26 |
2 22 4 25
|
syl3anc |
|- ( ph -> ( ( B (,) C ) u. { C } ) = ( B (,] C ) ) |
27 |
26
|
fveq2d |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( ( B (,) C ) u. { C } ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( B (,] C ) ) ) |
28 |
20
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
29 |
|
ovex |
|- ( D (,) C ) e. _V |
30 |
29
|
inex2 |
|- ( A i^i ( D (,) C ) ) e. _V |
31 |
|
snex |
|- { C } e. _V |
32 |
30 31
|
unex |
|- ( ( A i^i ( D (,) C ) ) u. { C } ) e. _V |
33 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( A i^i ( D (,) C ) ) u. { C } ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. Top ) |
34 |
28 32 33
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. Top |
35 |
34
|
a1i |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. Top ) |
36 |
|
pnfxr |
|- +oo e. RR* |
37 |
36
|
a1i |
|- ( ph -> +oo e. RR* ) |
38 |
2
|
xrleidd |
|- ( ph -> B <_ B ) |
39 |
3
|
ltpnfd |
|- ( ph -> C < +oo ) |
40 |
|
iocssioo |
|- ( ( ( B e. RR* /\ +oo e. RR* ) /\ ( B <_ B /\ C < +oo ) ) -> ( B (,] C ) C_ ( B (,) +oo ) ) |
41 |
2 37 38 39 40
|
syl22anc |
|- ( ph -> ( B (,] C ) C_ ( B (,) +oo ) ) |
42 |
|
simpr |
|- ( ( ph /\ x = C ) -> x = C ) |
43 |
|
snidg |
|- ( C e. RR -> C e. { C } ) |
44 |
|
elun2 |
|- ( C e. { C } -> C e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
45 |
3 43 44
|
3syl |
|- ( ph -> C e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ x = C ) -> C e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
47 |
42 46
|
eqeltrd |
|- ( ( ph /\ x = C ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
48 |
47
|
adantlr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ x = C ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
49 |
|
simpll |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> ph ) |
50 |
2
|
adantr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> B e. RR* ) |
51 |
50
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> B e. RR* ) |
52 |
22
|
adantr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> C e. RR* ) |
53 |
52
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> C e. RR* ) |
54 |
|
iocssre |
|- ( ( B e. RR* /\ C e. RR ) -> ( B (,] C ) C_ RR ) |
55 |
2 3 54
|
syl2anc |
|- ( ph -> ( B (,] C ) C_ RR ) |
56 |
55
|
sselda |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. RR ) |
57 |
56
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x e. RR ) |
58 |
|
simpr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( B (,] C ) ) |
59 |
|
iocgtlb |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B (,] C ) ) -> B < x ) |
60 |
50 52 58 59
|
syl3anc |
|- ( ( ph /\ x e. ( B (,] C ) ) -> B < x ) |
61 |
60
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> B < x ) |
62 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> C e. RR ) |
63 |
|
iocleub |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B (,] C ) ) -> x <_ C ) |
64 |
50 52 58 63
|
syl3anc |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x <_ C ) |
65 |
64
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x <_ C ) |
66 |
|
neqne |
|- ( -. x = C -> x =/= C ) |
67 |
66
|
adantl |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x =/= C ) |
68 |
67
|
necomd |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> C =/= x ) |
69 |
57 62 65 68
|
leneltd |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x < C ) |
70 |
51 53 57 61 69
|
eliood |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x e. ( B (,) C ) ) |
71 |
15
|
sselda |
|- ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( A i^i ( D (,) C ) ) ) |
72 |
|
elun1 |
|- ( x e. ( A i^i ( D (,) C ) ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
73 |
71 72
|
syl |
|- ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
74 |
49 70 73
|
syl2anc |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
75 |
48 74
|
pm2.61dan |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
76 |
75
|
ralrimiva |
|- ( ph -> A. x e. ( B (,] C ) x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
77 |
|
dfss3 |
|- ( ( B (,] C ) C_ ( ( A i^i ( D (,) C ) ) u. { C } ) <-> A. x e. ( B (,] C ) x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
78 |
76 77
|
sylibr |
|- ( ph -> ( B (,] C ) C_ ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
79 |
41 78
|
ssind |
|- ( ph -> ( B (,] C ) C_ ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
80 |
79
|
sseld |
|- ( ph -> ( x e. ( B (,] C ) -> x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ) |
81 |
24
|
adantr |
|- ( ( ph /\ x = C ) -> C e. ( B (,] C ) ) |
82 |
42 81
|
eqeltrd |
|- ( ( ph /\ x = C ) -> x e. ( B (,] C ) ) |
83 |
82
|
adantlr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ x = C ) -> x e. ( B (,] C ) ) |
84 |
|
ioossioc |
|- ( B (,) C ) C_ ( B (,] C ) |
85 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> B e. RR* ) |
86 |
22
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> C e. RR* ) |
87 |
|
elinel1 |
|- ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) -> x e. ( B (,) +oo ) ) |
88 |
87
|
elioored |
|- ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) -> x e. RR ) |
89 |
88
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. RR ) |
90 |
36
|
a1i |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> +oo e. RR* ) |
91 |
87
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. ( B (,) +oo ) ) |
92 |
|
ioogtlb |
|- ( ( B e. RR* /\ +oo e. RR* /\ x e. ( B (,) +oo ) ) -> B < x ) |
93 |
85 90 91 92
|
syl3anc |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> B < x ) |
94 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> D e. RR* ) |
95 |
|
elinel2 |
|- ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
96 |
|
id |
|- ( -. x = C -> -. x = C ) |
97 |
|
velsn |
|- ( x e. { C } <-> x = C ) |
98 |
96 97
|
sylnibr |
|- ( -. x = C -> -. x e. { C } ) |
99 |
|
elunnel2 |
|- ( ( x e. ( ( A i^i ( D (,) C ) ) u. { C } ) /\ -. x e. { C } ) -> x e. ( A i^i ( D (,) C ) ) ) |
100 |
95 98 99
|
syl2an |
|- ( ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) /\ -. x = C ) -> x e. ( A i^i ( D (,) C ) ) ) |
101 |
16 100
|
sselid |
|- ( ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) /\ -. x = C ) -> x e. ( D (,) C ) ) |
102 |
101
|
adantll |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. ( D (,) C ) ) |
103 |
|
iooltub |
|- ( ( D e. RR* /\ C e. RR* /\ x e. ( D (,) C ) ) -> x < C ) |
104 |
94 86 102 103
|
syl3anc |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x < C ) |
105 |
85 86 89 93 104
|
eliood |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. ( B (,) C ) ) |
106 |
84 105
|
sselid |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. ( B (,] C ) ) |
107 |
83 106
|
pm2.61dan |
|- ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) -> x e. ( B (,] C ) ) |
108 |
107
|
ex |
|- ( ph -> ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) -> x e. ( B (,] C ) ) ) |
109 |
80 108
|
impbid |
|- ( ph -> ( x e. ( B (,] C ) <-> x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ) |
110 |
109
|
eqrdv |
|- ( ph -> ( B (,] C ) = ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
111 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
112 |
111
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
113 |
32
|
a1i |
|- ( ph -> ( ( A i^i ( D (,) C ) ) u. { C } ) e. _V ) |
114 |
|
iooretop |
|- ( B (,) +oo ) e. ( topGen ` ran (,) ) |
115 |
114
|
a1i |
|- ( ph -> ( B (,) +oo ) e. ( topGen ` ran (,) ) ) |
116 |
|
elrestr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A i^i ( D (,) C ) ) u. { C } ) e. _V /\ ( B (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
117 |
112 113 115 116
|
syl3anc |
|- ( ph -> ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
118 |
110 117
|
eqeltrd |
|- ( ph -> ( B (,] C ) e. ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
119 |
20
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
120 |
119
|
oveq1i |
|- ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
121 |
28
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
122 |
|
ioossre |
|- ( D (,) C ) C_ RR |
123 |
16 122
|
sstri |
|- ( A i^i ( D (,) C ) ) C_ RR |
124 |
123
|
a1i |
|- ( ph -> ( A i^i ( D (,) C ) ) C_ RR ) |
125 |
3
|
snssd |
|- ( ph -> { C } C_ RR ) |
126 |
124 125
|
unssd |
|- ( ph -> ( ( A i^i ( D (,) C ) ) u. { C } ) C_ RR ) |
127 |
|
reex |
|- RR e. _V |
128 |
127
|
a1i |
|- ( ph -> RR e. _V ) |
129 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( A i^i ( D (,) C ) ) u. { C } ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
130 |
121 126 128 129
|
syl3anc |
|- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
131 |
120 130
|
eqtrid |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
132 |
118 131
|
eleqtrd |
|- ( ph -> ( B (,] C ) e. ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
133 |
|
isopn3i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. Top /\ ( B (,] C ) e. ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( B (,] C ) ) = ( B (,] C ) ) |
134 |
35 132 133
|
syl2anc |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( B (,] C ) ) = ( B (,] C ) ) |
135 |
27 134
|
eqtr2d |
|- ( ph -> ( B (,] C ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( ( B (,) C ) u. { C } ) ) ) |
136 |
24 135
|
eleqtrd |
|- ( ph -> C e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( ( B (,) C ) u. { C } ) ) ) |
137 |
14 15 19 20 21 136
|
limcres |
|- ( ph -> ( ( ( F |` ( D (,) C ) ) |` ( B (,) C ) ) limCC C ) = ( ( F |` ( D (,) C ) ) limCC C ) ) |
138 |
12 137
|
eqtrd |
|- ( ph -> ( ( F |` ( B (,) C ) ) limCC C ) = ( ( F |` ( D (,) C ) ) limCC C ) ) |