| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcresiooub.f |
|- ( ph -> F : A --> CC ) |
| 2 |
|
limcresiooub.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
limcresiooub.c |
|- ( ph -> C e. RR ) |
| 4 |
|
limcresiooub.bltc |
|- ( ph -> B < C ) |
| 5 |
|
limcresiooub.bcss |
|- ( ph -> ( B (,) C ) C_ A ) |
| 6 |
|
limcresiooub.d |
|- ( ph -> D e. RR* ) |
| 7 |
|
limcresiooub.cled |
|- ( ph -> D <_ B ) |
| 8 |
|
iooss1 |
|- ( ( D e. RR* /\ D <_ B ) -> ( B (,) C ) C_ ( D (,) C ) ) |
| 9 |
6 7 8
|
syl2anc |
|- ( ph -> ( B (,) C ) C_ ( D (,) C ) ) |
| 10 |
9
|
resabs1d |
|- ( ph -> ( ( F |` ( D (,) C ) ) |` ( B (,) C ) ) = ( F |` ( B (,) C ) ) ) |
| 11 |
10
|
eqcomd |
|- ( ph -> ( F |` ( B (,) C ) ) = ( ( F |` ( D (,) C ) ) |` ( B (,) C ) ) ) |
| 12 |
11
|
oveq1d |
|- ( ph -> ( ( F |` ( B (,) C ) ) limCC C ) = ( ( ( F |` ( D (,) C ) ) |` ( B (,) C ) ) limCC C ) ) |
| 13 |
|
fresin |
|- ( F : A --> CC -> ( F |` ( D (,) C ) ) : ( A i^i ( D (,) C ) ) --> CC ) |
| 14 |
1 13
|
syl |
|- ( ph -> ( F |` ( D (,) C ) ) : ( A i^i ( D (,) C ) ) --> CC ) |
| 15 |
5 9
|
ssind |
|- ( ph -> ( B (,) C ) C_ ( A i^i ( D (,) C ) ) ) |
| 16 |
|
inss2 |
|- ( A i^i ( D (,) C ) ) C_ ( D (,) C ) |
| 17 |
|
ioosscn |
|- ( D (,) C ) C_ CC |
| 18 |
16 17
|
sstri |
|- ( A i^i ( D (,) C ) ) C_ CC |
| 19 |
18
|
a1i |
|- ( ph -> ( A i^i ( D (,) C ) ) C_ CC ) |
| 20 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 21 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 22 |
3
|
rexrd |
|- ( ph -> C e. RR* ) |
| 23 |
|
ubioc1 |
|- ( ( B e. RR* /\ C e. RR* /\ B < C ) -> C e. ( B (,] C ) ) |
| 24 |
2 22 4 23
|
syl3anc |
|- ( ph -> C e. ( B (,] C ) ) |
| 25 |
|
ioounsn |
|- ( ( B e. RR* /\ C e. RR* /\ B < C ) -> ( ( B (,) C ) u. { C } ) = ( B (,] C ) ) |
| 26 |
2 22 4 25
|
syl3anc |
|- ( ph -> ( ( B (,) C ) u. { C } ) = ( B (,] C ) ) |
| 27 |
26
|
fveq2d |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( ( B (,) C ) u. { C } ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( B (,] C ) ) ) |
| 28 |
20
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 29 |
|
ovex |
|- ( D (,) C ) e. _V |
| 30 |
29
|
inex2 |
|- ( A i^i ( D (,) C ) ) e. _V |
| 31 |
|
snex |
|- { C } e. _V |
| 32 |
30 31
|
unex |
|- ( ( A i^i ( D (,) C ) ) u. { C } ) e. _V |
| 33 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( A i^i ( D (,) C ) ) u. { C } ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. Top ) |
| 34 |
28 32 33
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. Top |
| 35 |
34
|
a1i |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. Top ) |
| 36 |
|
pnfxr |
|- +oo e. RR* |
| 37 |
36
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 38 |
2
|
xrleidd |
|- ( ph -> B <_ B ) |
| 39 |
3
|
ltpnfd |
|- ( ph -> C < +oo ) |
| 40 |
|
iocssioo |
|- ( ( ( B e. RR* /\ +oo e. RR* ) /\ ( B <_ B /\ C < +oo ) ) -> ( B (,] C ) C_ ( B (,) +oo ) ) |
| 41 |
2 37 38 39 40
|
syl22anc |
|- ( ph -> ( B (,] C ) C_ ( B (,) +oo ) ) |
| 42 |
|
simpr |
|- ( ( ph /\ x = C ) -> x = C ) |
| 43 |
|
snidg |
|- ( C e. RR -> C e. { C } ) |
| 44 |
|
elun2 |
|- ( C e. { C } -> C e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 45 |
3 43 44
|
3syl |
|- ( ph -> C e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ x = C ) -> C e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 47 |
42 46
|
eqeltrd |
|- ( ( ph /\ x = C ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 48 |
47
|
adantlr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ x = C ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 49 |
|
simpll |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> ph ) |
| 50 |
2
|
adantr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> B e. RR* ) |
| 51 |
50
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> B e. RR* ) |
| 52 |
22
|
adantr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> C e. RR* ) |
| 53 |
52
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> C e. RR* ) |
| 54 |
|
iocssre |
|- ( ( B e. RR* /\ C e. RR ) -> ( B (,] C ) C_ RR ) |
| 55 |
2 3 54
|
syl2anc |
|- ( ph -> ( B (,] C ) C_ RR ) |
| 56 |
55
|
sselda |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. RR ) |
| 57 |
56
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x e. RR ) |
| 58 |
|
simpr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( B (,] C ) ) |
| 59 |
|
iocgtlb |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B (,] C ) ) -> B < x ) |
| 60 |
50 52 58 59
|
syl3anc |
|- ( ( ph /\ x e. ( B (,] C ) ) -> B < x ) |
| 61 |
60
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> B < x ) |
| 62 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> C e. RR ) |
| 63 |
|
iocleub |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B (,] C ) ) -> x <_ C ) |
| 64 |
50 52 58 63
|
syl3anc |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x <_ C ) |
| 65 |
64
|
adantr |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x <_ C ) |
| 66 |
|
neqne |
|- ( -. x = C -> x =/= C ) |
| 67 |
66
|
adantl |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x =/= C ) |
| 68 |
67
|
necomd |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> C =/= x ) |
| 69 |
57 62 65 68
|
leneltd |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x < C ) |
| 70 |
51 53 57 61 69
|
eliood |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x e. ( B (,) C ) ) |
| 71 |
15
|
sselda |
|- ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( A i^i ( D (,) C ) ) ) |
| 72 |
|
elun1 |
|- ( x e. ( A i^i ( D (,) C ) ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 73 |
71 72
|
syl |
|- ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 74 |
49 70 73
|
syl2anc |
|- ( ( ( ph /\ x e. ( B (,] C ) ) /\ -. x = C ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 75 |
48 74
|
pm2.61dan |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 76 |
75
|
ralrimiva |
|- ( ph -> A. x e. ( B (,] C ) x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 77 |
|
dfss3 |
|- ( ( B (,] C ) C_ ( ( A i^i ( D (,) C ) ) u. { C } ) <-> A. x e. ( B (,] C ) x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 78 |
76 77
|
sylibr |
|- ( ph -> ( B (,] C ) C_ ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 79 |
41 78
|
ssind |
|- ( ph -> ( B (,] C ) C_ ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
| 80 |
79
|
sseld |
|- ( ph -> ( x e. ( B (,] C ) -> x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ) |
| 81 |
24
|
adantr |
|- ( ( ph /\ x = C ) -> C e. ( B (,] C ) ) |
| 82 |
42 81
|
eqeltrd |
|- ( ( ph /\ x = C ) -> x e. ( B (,] C ) ) |
| 83 |
82
|
adantlr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ x = C ) -> x e. ( B (,] C ) ) |
| 84 |
|
ioossioc |
|- ( B (,) C ) C_ ( B (,] C ) |
| 85 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> B e. RR* ) |
| 86 |
22
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> C e. RR* ) |
| 87 |
|
elinel1 |
|- ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) -> x e. ( B (,) +oo ) ) |
| 88 |
87
|
elioored |
|- ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) -> x e. RR ) |
| 89 |
88
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. RR ) |
| 90 |
36
|
a1i |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> +oo e. RR* ) |
| 91 |
87
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. ( B (,) +oo ) ) |
| 92 |
|
ioogtlb |
|- ( ( B e. RR* /\ +oo e. RR* /\ x e. ( B (,) +oo ) ) -> B < x ) |
| 93 |
85 90 91 92
|
syl3anc |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> B < x ) |
| 94 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> D e. RR* ) |
| 95 |
|
elinel2 |
|- ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) -> x e. ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 96 |
|
id |
|- ( -. x = C -> -. x = C ) |
| 97 |
|
velsn |
|- ( x e. { C } <-> x = C ) |
| 98 |
96 97
|
sylnibr |
|- ( -. x = C -> -. x e. { C } ) |
| 99 |
|
elunnel2 |
|- ( ( x e. ( ( A i^i ( D (,) C ) ) u. { C } ) /\ -. x e. { C } ) -> x e. ( A i^i ( D (,) C ) ) ) |
| 100 |
95 98 99
|
syl2an |
|- ( ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) /\ -. x = C ) -> x e. ( A i^i ( D (,) C ) ) ) |
| 101 |
16 100
|
sselid |
|- ( ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) /\ -. x = C ) -> x e. ( D (,) C ) ) |
| 102 |
101
|
adantll |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. ( D (,) C ) ) |
| 103 |
|
iooltub |
|- ( ( D e. RR* /\ C e. RR* /\ x e. ( D (,) C ) ) -> x < C ) |
| 104 |
94 86 102 103
|
syl3anc |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x < C ) |
| 105 |
85 86 89 93 104
|
eliood |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. ( B (,) C ) ) |
| 106 |
84 105
|
sselid |
|- ( ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) /\ -. x = C ) -> x e. ( B (,] C ) ) |
| 107 |
83 106
|
pm2.61dan |
|- ( ( ph /\ x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) -> x e. ( B (,] C ) ) |
| 108 |
107
|
ex |
|- ( ph -> ( x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) -> x e. ( B (,] C ) ) ) |
| 109 |
80 108
|
impbid |
|- ( ph -> ( x e. ( B (,] C ) <-> x e. ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ) |
| 110 |
109
|
eqrdv |
|- ( ph -> ( B (,] C ) = ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
| 111 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 112 |
111
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
| 113 |
32
|
a1i |
|- ( ph -> ( ( A i^i ( D (,) C ) ) u. { C } ) e. _V ) |
| 114 |
|
iooretop |
|- ( B (,) +oo ) e. ( topGen ` ran (,) ) |
| 115 |
114
|
a1i |
|- ( ph -> ( B (,) +oo ) e. ( topGen ` ran (,) ) ) |
| 116 |
|
elrestr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A i^i ( D (,) C ) ) u. { C } ) e. _V /\ ( B (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
| 117 |
112 113 115 116
|
syl3anc |
|- ( ph -> ( ( B (,) +oo ) i^i ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
| 118 |
110 117
|
eqeltrd |
|- ( ph -> ( B (,] C ) e. ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
| 119 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 120 |
119
|
oveq1i |
|- ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) |
| 121 |
28
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 122 |
|
ioossre |
|- ( D (,) C ) C_ RR |
| 123 |
16 122
|
sstri |
|- ( A i^i ( D (,) C ) ) C_ RR |
| 124 |
123
|
a1i |
|- ( ph -> ( A i^i ( D (,) C ) ) C_ RR ) |
| 125 |
3
|
snssd |
|- ( ph -> { C } C_ RR ) |
| 126 |
124 125
|
unssd |
|- ( ph -> ( ( A i^i ( D (,) C ) ) u. { C } ) C_ RR ) |
| 127 |
|
reex |
|- RR e. _V |
| 128 |
127
|
a1i |
|- ( ph -> RR e. _V ) |
| 129 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( A i^i ( D (,) C ) ) u. { C } ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
| 130 |
121 126 128 129
|
syl3anc |
|- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
| 131 |
120 130
|
eqtrid |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
| 132 |
118 131
|
eleqtrd |
|- ( ph -> ( B (,] C ) e. ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) |
| 133 |
|
isopn3i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) e. Top /\ ( B (,] C ) e. ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( B (,] C ) ) = ( B (,] C ) ) |
| 134 |
35 132 133
|
syl2anc |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( B (,] C ) ) = ( B (,] C ) ) |
| 135 |
27 134
|
eqtr2d |
|- ( ph -> ( B (,] C ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( ( B (,) C ) u. { C } ) ) ) |
| 136 |
24 135
|
eleqtrd |
|- ( ph -> C e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A i^i ( D (,) C ) ) u. { C } ) ) ) ` ( ( B (,) C ) u. { C } ) ) ) |
| 137 |
14 15 19 20 21 136
|
limcres |
|- ( ph -> ( ( ( F |` ( D (,) C ) ) |` ( B (,) C ) ) limCC C ) = ( ( F |` ( D (,) C ) ) limCC C ) ) |
| 138 |
12 137
|
eqtrd |
|- ( ph -> ( ( F |` ( B (,) C ) ) limCC C ) = ( ( F |` ( D (,) C ) ) limCC C ) ) |