Description: Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupreuz.1 | |
|
limsupreuz.2 | |
||
limsupreuz.3 | |
||
limsupreuz.4 | |
||
Assertion | limsupreuz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupreuz.1 | |
|
2 | limsupreuz.2 | |
|
3 | limsupreuz.3 | |
|
4 | limsupreuz.4 | |
|
5 | nfcv | |
|
6 | 4 | frexr | |
7 | 5 2 3 6 | limsupre3uzlem | |
8 | breq1 | |
|
9 | 8 | rexbidv | |
10 | 9 | ralbidv | |
11 | fveq2 | |
|
12 | 11 | rexeqdv | |
13 | nfcv | |
|
14 | nfcv | |
|
15 | nfcv | |
|
16 | 1 15 | nffv | |
17 | 13 14 16 | nfbr | |
18 | nfv | |
|
19 | fveq2 | |
|
20 | 19 | breq2d | |
21 | 17 18 20 | cbvrexw | |
22 | 21 | a1i | |
23 | 12 22 | bitrd | |
24 | 23 | cbvralvw | |
25 | 24 | a1i | |
26 | 10 25 | bitrd | |
27 | 26 | cbvrexvw | |
28 | breq2 | |
|
29 | 28 | ralbidv | |
30 | 29 | rexbidv | |
31 | 11 | raleqdv | |
32 | 16 14 13 | nfbr | |
33 | nfv | |
|
34 | 19 | breq1d | |
35 | 32 33 34 | cbvralw | |
36 | 35 | a1i | |
37 | 31 36 | bitrd | |
38 | 37 | cbvrexvw | |
39 | 38 | a1i | |
40 | 30 39 | bitrd | |
41 | 40 | cbvrexvw | |
42 | 27 41 | anbi12i | |
43 | 42 | a1i | |
44 | 7 43 | bitrd | |
45 | nfv | |
|
46 | nfcv | |
|
47 | 1 46 | nffv | |
48 | 47 14 13 | nfbr | |
49 | fveq2 | |
|
50 | 49 | breq1d | |
51 | 45 48 50 | cbvralw | |
52 | 51 | rexbii | |
53 | 52 | rexbii | |
54 | 53 | a1i | |
55 | nfv | |
|
56 | 4 | adantr | |
57 | simpr | |
|
58 | 56 57 | ffvelcdmd | |
59 | 55 2 3 58 | uzub | |
60 | eqcom | |
|
61 | 60 | imbi1i | |
62 | bicom | |
|
63 | 62 | imbi2i | |
64 | 61 63 | bitri | |
65 | 50 64 | mpbi | |
66 | 48 45 65 | cbvralw | |
67 | 66 | rexbii | |
68 | 67 | a1i | |
69 | 54 59 68 | 3bitrd | |
70 | 69 | anbi2d | |
71 | 44 70 | bitrd | |