Metamath Proof Explorer


Theorem limsupreuz

Description: Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupreuz.1 _jF
limsupreuz.2 φM
limsupreuz.3 Z=M
limsupreuz.4 φF:Z
Assertion limsupreuz φlim supFxkZjkxFjxjZFjx

Proof

Step Hyp Ref Expression
1 limsupreuz.1 _jF
2 limsupreuz.2 φM
3 limsupreuz.3 Z=M
4 limsupreuz.4 φF:Z
5 nfcv _lF
6 4 frexr φF:Z*
7 5 2 3 6 limsupre3uzlem φlim supFyiZliyFlyiZliFly
8 breq1 y=xyFlxFl
9 8 rexbidv y=xliyFllixFl
10 9 ralbidv y=xiZliyFliZlixFl
11 fveq2 i=ki=k
12 11 rexeqdv i=klixFllkxFl
13 nfcv _jx
14 nfcv _j
15 nfcv _jl
16 1 15 nffv _jFl
17 13 14 16 nfbr jxFl
18 nfv lxFj
19 fveq2 l=jFl=Fj
20 19 breq2d l=jxFlxFj
21 17 18 20 cbvrexw lkxFljkxFj
22 21 a1i i=klkxFljkxFj
23 12 22 bitrd i=klixFljkxFj
24 23 cbvralvw iZlixFlkZjkxFj
25 24 a1i y=xiZlixFlkZjkxFj
26 10 25 bitrd y=xiZliyFlkZjkxFj
27 26 cbvrexvw yiZliyFlxkZjkxFj
28 breq2 y=xFlyFlx
29 28 ralbidv y=xliFlyliFlx
30 29 rexbidv y=xiZliFlyiZliFlx
31 11 raleqdv i=kliFlxlkFlx
32 16 14 13 nfbr jFlx
33 nfv lFjx
34 19 breq1d l=jFlxFjx
35 32 33 34 cbvralw lkFlxjkFjx
36 35 a1i i=klkFlxjkFjx
37 31 36 bitrd i=kliFlxjkFjx
38 37 cbvrexvw iZliFlxkZjkFjx
39 38 a1i y=xiZliFlxkZjkFjx
40 30 39 bitrd y=xiZliFlykZjkFjx
41 40 cbvrexvw yiZliFlyxkZjkFjx
42 27 41 anbi12i yiZliyFlyiZliFlyxkZjkxFjxkZjkFjx
43 42 a1i φyiZliyFlyiZliFlyxkZjkxFjxkZjkFjx
44 7 43 bitrd φlim supFxkZjkxFjxkZjkFjx
45 nfv iFjx
46 nfcv _ji
47 1 46 nffv _jFi
48 47 14 13 nfbr jFix
49 fveq2 j=iFj=Fi
50 49 breq1d j=iFjxFix
51 45 48 50 cbvralw jkFjxikFix
52 51 rexbii kZjkFjxkZikFix
53 52 rexbii xkZjkFjxxkZikFix
54 53 a1i φxkZjkFjxxkZikFix
55 nfv iφ
56 4 adantr φiZF:Z
57 simpr φiZiZ
58 56 57 ffvelcdmd φiZFi
59 55 2 3 58 uzub φxkZikFixxiZFix
60 eqcom j=ii=j
61 60 imbi1i j=iFjxFixi=jFjxFix
62 bicom FjxFixFixFjx
63 62 imbi2i i=jFjxFixi=jFixFjx
64 61 63 bitri j=iFjxFixi=jFixFjx
65 50 64 mpbi i=jFixFjx
66 48 45 65 cbvralw iZFixjZFjx
67 66 rexbii xiZFixxjZFjx
68 67 a1i φxiZFixxjZFjx
69 54 59 68 3bitrd φxkZjkFjxxjZFjx
70 69 anbi2d φxkZjkxFjxkZjkFjxxkZjkxFjxjZFjx
71 44 70 bitrd φlim supFxkZjkxFjxjZFjx