Step |
Hyp |
Ref |
Expression |
1 |
|
limsupreuz.1 |
|
2 |
|
limsupreuz.2 |
|
3 |
|
limsupreuz.3 |
|
4 |
|
limsupreuz.4 |
|
5 |
|
nfcv |
|
6 |
4
|
frexr |
|
7 |
5 2 3 6
|
limsupre3uzlem |
|
8 |
|
breq1 |
|
9 |
8
|
rexbidv |
|
10 |
9
|
ralbidv |
|
11 |
|
fveq2 |
|
12 |
11
|
rexeqdv |
|
13 |
|
nfcv |
|
14 |
|
nfcv |
|
15 |
|
nfcv |
|
16 |
1 15
|
nffv |
|
17 |
13 14 16
|
nfbr |
|
18 |
|
nfv |
|
19 |
|
fveq2 |
|
20 |
19
|
breq2d |
|
21 |
17 18 20
|
cbvrexw |
|
22 |
21
|
a1i |
|
23 |
12 22
|
bitrd |
|
24 |
23
|
cbvralvw |
|
25 |
24
|
a1i |
|
26 |
10 25
|
bitrd |
|
27 |
26
|
cbvrexvw |
|
28 |
|
breq2 |
|
29 |
28
|
ralbidv |
|
30 |
29
|
rexbidv |
|
31 |
11
|
raleqdv |
|
32 |
16 14 13
|
nfbr |
|
33 |
|
nfv |
|
34 |
19
|
breq1d |
|
35 |
32 33 34
|
cbvralw |
|
36 |
35
|
a1i |
|
37 |
31 36
|
bitrd |
|
38 |
37
|
cbvrexvw |
|
39 |
38
|
a1i |
|
40 |
30 39
|
bitrd |
|
41 |
40
|
cbvrexvw |
|
42 |
27 41
|
anbi12i |
|
43 |
42
|
a1i |
|
44 |
7 43
|
bitrd |
|
45 |
|
nfv |
|
46 |
|
nfcv |
|
47 |
1 46
|
nffv |
|
48 |
47 14 13
|
nfbr |
|
49 |
|
fveq2 |
|
50 |
49
|
breq1d |
|
51 |
45 48 50
|
cbvralw |
|
52 |
51
|
rexbii |
|
53 |
52
|
rexbii |
|
54 |
53
|
a1i |
|
55 |
|
nfv |
|
56 |
4
|
adantr |
|
57 |
|
simpr |
|
58 |
56 57
|
ffvelrnd |
|
59 |
55 2 3 58
|
uzub |
|
60 |
|
eqcom |
|
61 |
60
|
imbi1i |
|
62 |
|
bicom |
|
63 |
62
|
imbi2i |
|
64 |
61 63
|
bitri |
|
65 |
50 64
|
mpbi |
|
66 |
48 45 65
|
cbvralw |
|
67 |
66
|
rexbii |
|
68 |
67
|
a1i |
|
69 |
54 59 68
|
3bitrd |
|
70 |
69
|
anbi2d |
|
71 |
44 70
|
bitrd |
|