Metamath Proof Explorer


Theorem lkrpssN

Description: Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lkrpss.f F=LFnlW
lkrpss.k K=LKerW
lkrpss.d D=LDualW
lkrpss.o 0˙=0D
lkrpss.w φWLVec
lkrpss.g φGF
lkrpss.h φHF
Assertion lkrpssN φKGKHG0˙H=0˙

Proof

Step Hyp Ref Expression
1 lkrpss.f F=LFnlW
2 lkrpss.k K=LKerW
3 lkrpss.d D=LDualW
4 lkrpss.o 0˙=0D
5 lkrpss.w φWLVec
6 lkrpss.g φGF
7 lkrpss.h φHF
8 df-pss KGKHKGKHKGKH
9 simpr φKGKHKGKH
10 eqid BaseW=BaseW
11 lveclmod WLVecWLMod
12 5 11 syl φWLMod
13 10 1 2 12 7 lkrssv φKHBaseW
14 13 adantr φKGKHKHBaseW
15 9 14 psssstrd φKGKHKGBaseW
16 15 pssned φKGKHKGBaseW
17 8 16 sylan2br φKGKHKGKHKGBaseW
18 simplr φKGKHKHLSHypWKGKH
19 eqid LSHypW=LSHypW
20 5 ad2antrr φKGKHKHLSHypWWLVec
21 simpr φKGKHKHLSHypWKGLSHypWKGLSHypW
22 simplr φKGKHKHLSHypWKG=BaseWKHLSHypW
23 13 ad3antrrr φKGKHKHLSHypWKG=BaseWKHBaseW
24 simpr φKGKHKHLSHypWKG=BaseWKG=BaseW
25 simpllr φKGKHKHLSHypWKG=BaseWKGKH
26 24 25 eqsstrrd φKGKHKHLSHypWKG=BaseWBaseWKH
27 23 26 eqssd φKGKHKHLSHypWKG=BaseWKH=BaseW
28 10 19 1 2 5 7 lkrshp4 φKHBaseWKHLSHypW
29 28 ad3antrrr φKGKHKHLSHypWKG=BaseWKHBaseWKHLSHypW
30 29 necon1bbid φKGKHKHLSHypWKG=BaseW¬KHLSHypWKH=BaseW
31 27 30 mpbird φKGKHKHLSHypWKG=BaseW¬KHLSHypW
32 22 31 pm2.21dd φKGKHKHLSHypWKG=BaseWKGLSHypW
33 10 19 1 2 5 6 lkrshpor φKGLSHypWKG=BaseW
34 33 ad2antrr φKGKHKHLSHypWKGLSHypWKG=BaseW
35 21 32 34 mpjaodan φKGKHKHLSHypWKGLSHypW
36 simpr φKGKHKHLSHypWKHLSHypW
37 19 20 35 36 lshpcmp φKGKHKHLSHypWKGKHKG=KH
38 18 37 mpbid φKGKHKHLSHypWKG=KH
39 38 ex φKGKHKHLSHypWKG=KH
40 39 necon3ad φKGKHKGKH¬KHLSHypW
41 40 impr φKGKHKGKH¬KHLSHypW
42 28 necon1bbid φ¬KHLSHypWKH=BaseW
43 42 adantr φKGKHKGKH¬KHLSHypWKH=BaseW
44 41 43 mpbid φKGKHKGKHKH=BaseW
45 17 44 jca φKGKHKGKHKGBaseWKH=BaseW
46 10 1 2 12 6 lkrssv φKGBaseW
47 46 adantr φKGBaseWKH=BaseWKGBaseW
48 simprr φKGBaseWKH=BaseWKH=BaseW
49 48 eqcomd φKGBaseWKH=BaseWBaseW=KH
50 47 49 sseqtrd φKGBaseWKH=BaseWKGKH
51 simprl φKGBaseWKH=BaseWKGBaseW
52 51 49 neeqtrd φKGBaseWKH=BaseWKGKH
53 50 52 jca φKGBaseWKH=BaseWKGKHKGKH
54 45 53 impbida φKGKHKGKHKGBaseWKH=BaseW
55 8 54 bitrid φKGKHKGBaseWKH=BaseW
56 10 1 2 3 4 12 6 lkr0f2 φKG=BaseWG=0˙
57 56 necon3bid φKGBaseWG0˙
58 10 1 2 3 4 12 7 lkr0f2 φKH=BaseWH=0˙
59 57 58 anbi12d φKGBaseWKH=BaseWG0˙H=0˙
60 55 59 bitrd φKGKHG0˙H=0˙